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A Comprehensive Review of Plume Source Localization Efforts

Using Unmanned Vehicles for Environmental Sensing

Tyrell Lewis, Kiran Bhaganagar”

Abstract. Local atmospheric conditions including wind speed and turbulence significantly
influence the dispersion of pollutant plumes, introducing severe difficulties in predicting its
trajectory, potential evacuation sites, and ultimately containment e *orts. Ongoing developments
in estimating rapid contaminant dispersion include the combinec’ use ot local meteorological data
along with plume-source localization and identification via a'itor,»mous data-driven
mobile-sensing robotic/vehicular platforms. With a vast nu, ~ber of available
environmental-sensing mobile platforms, contaminant u spe sion scenarios, and source-finding
algorithms, selection of the ideal configuration for z.tonomous source localization involves a
great deal of opportunity alongside uncertainty. "his saper aims to review the significant
developments of unmanned ground-based : 0b’ (e sensing network configurations and autonomous

data acquisition strategies commonly u2ad for wie task of gaseous plume source localization.

Keywords: Autonomous Jlume source localization algorithms, mobile environmental
sensing networks, unmanned y.nunu vehicles, atmospheric dispersion modelling applications,

source term estimation

1 Introductioi

In hazardous situations involving the emission of Chemical, Biological, Radiological and Nuclear
(CBRN) pollutants, containment of the release requires locating and neutralizing the source [87].
To characterise the nature of the release, information must be gathered through a process known as
source term estimation (STE) that aims to estimate several parameters including the source

location, emission strength, time of release, pollutant type, and dispersion behavior by generating a
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predictive model of the contaminant dispersion [17]. In realistic atmospheric conditions involving
advection, the effect of turbulence on dispersion of pollutant plumes [56] introduces many
difficulties in determining the source parameters based on its evolving trajectory [89, 21] which
can develop in a range of environments including:

e Above-ground terrains: where chemical dispersion events [65] and forest fires [26] pose
threatening hazards to nearby populations [36].

e Subsurface terrains: where gas leaks can cause the accumulation of a concentrated toxin
[77]. Screening oil and gas reserves for hydrocarbon leaks is an additional slightly less
threatening example [114].

e Marine environments: where applications include monitc.inc the dispersion of oil spills
[29] and ocean temperatures [121] at the surface, alcng wich underwater surveillance [58].
Emphasizing STE in above-ground terrains, cu reat approaches for predicting the

characteristics of contaminant dispersion include the c¢an.nined use of local meteorological data
collected from static sensing grids and weather stat'c:1s ' met. towers [50], mapping global weather
conditions from satellite imaging [107], anc « < u~llection of environmental data from a range of
sensors mounted to unmanned vehicles, «»-med mobile-sensing networks (MSN). The data
collected from these measurements can t1.>n be used in two types of models:

e Receptor models: Given concer (retion data measurements, provide an estimation of the
source parameters.

e Dispersion models: Givon source parameters and known meteorological conditions,
provide a predictir.in of contaminant concentration at some distance away from the source.
Measurements o. meweorological data can be either fixed in location by a network of static

sensors or collected at variable locations over time by mobile sensors. Static sensor networks
provide a means of continuously collecting accurate meteorological data, however they are limited
in applicability by their fixed locations [50], where data collection towers can be separated by a
displacement of 50 meters. This is a crucial issue for the STE process, as the development of a
reliable model is dependent upon known measurements near the site of release. To gather a larger
set of data within a moving plume, mobile sensing devices are required, and can be carried by
either a human or vehicle, guided remotely or autonomously. Due to the hazardous nature of
exposure involved with the former handheld method, mobile-sensing offers the much needed

safety to limit potential contact with noxious elements. The mobile-sensing approach is typically



accomplished through the use of autonomous robots [27] and/or unmanned vehicles operating
independently or cooperatively (swarm robotics). Unmanned vehicles are capable of reliably
traversing harsh terrains [79] that are difficult or impossible for humans to explore due to the
surface roughness belonging to many environmental landscapes. Their ability to navigate near the
source location is therefore critical, and has been given significant attention in this field of research
as a result.

Recent trends, ongoing developments, and associated difficulties in atmospheric
environmental sensing using autonomous unmanned mobile ground robots for gaseous plume
source detection and interface identification is the primary focus of v s review. The scope of each
effort as they relate to the primary task of source localizatio is examined in the following
subsections, along with the associated areas of difficultv that they introduce. This paper is
arranged as follows: in section 2.1, methods of sensing er..*ru."mental variables are reviewed from
past to present. The measurement data can be used as inp i to guidance algorithms that navigate
the mobile platform towards its estimate of the .ow.rce location. Before the implementation of
mobile sensing algorithms is discussed, a brief au‘line of the different types of sensing devices and
their functionality is examined, in additic™ to the difficulties associated with environmental
monitoring. In order to predict the dispeicion of contaminants in realistic atmospheric conditions,
many Atmospheric Transport and Dispfrs un (ATD) Models are available that aim to represent the
dispersion as specified by the type f suurce and ambient environmental conditions. The approach
to modeling the dispersion of a cantaminant within its environment is covered in section 2.2,
where the dispersion chara2tei ~*cs are largely dependent upon the level of atmospheric stability.

In this reviev., ~tiction is given primarily to unmanned land-based vehicles acting as
autonomous mobile-serc.ng networks for the source term estimation problem. While this
primarily includes unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV), a
greater emphasis is placed on UGV’s performing the task of source localization. The major aspects
of autonomous mobile land-based robots used for source localization are reviewed in section 2.3
including vehicle localization, mapping, and corresponding areas of difficulty. One major
component in determining pollutant source term parameters involves deploying autonomous
unmanned vehicles that seek the location of the contaminant emission. Many strategic methods
have been employed to develop a reliable source localization algorithm that gathers useful

information about the nature of the dispersion. These strategies fall into several distinguishable



methodologies including exploration-based, optimization, probabilistic, and hybrid approaches. In
section 3, a review of source localization algorithms aims to cover several developing strategies
for this crucial task.

Sharing the overall objective of obtaining accurate meteorological data to sufficiently
estimate the nature of a contaminant plume’s dispersion, the tracking of a plume’s
boundary/edge/interface can also be accomplished autonomously through the deployment of
unmanned vehicles. Techniques developed for this purpose utilize measurements of concentration
in the region of interest at individual points with a single vehicle or multiple points with
cooperative vehicles in order to approximate the spatial extent of the >ontaminated area. In section
4, approaches to tracking the boundary (or interface) of a dispercing Jlume are listed and covered
in brief detail to highlight the practical use of many unmanne 1 ro),otic systems. Finally, the paper
concludes by addressing the current limitations of sourzc localization strategies using UGVs as
mobile sensing networks, then provides an outlook on u.= emerging trends and expectations to
accomplishing source term estimation using auton >r.0'1s robots.

While there are many topics relevant *2 _nurce term estimation, some useful information
specific to deploying UGV’s for applicatior.. *.ivolving gas sensing can be found in [18, 19, 7, 30].
The topics of atmospheric dispersion n.ndeling [49, 63] and simulation techniques for plume
source localization [8] also share impcrtiuice for the current discussion. Several applications of

source localization algorithms usi. 1 mubile sensors are reviewed in [93, 50, 95, 59].

2 Environmen:al Sensing Using Mobile Robots

2.1 Environmenta) Sensing and Data Acquisition

Sensor measurements of environmental parameters for pollutant source localization commonly
include gas concentration [64], wind speed and direction [51], turbulent intensity, temperature,
acoustics [103], humidity, mass flux [77], entropy [116], and radiation [42], depending on the
nature of the plume and the ambient conditions. The data collected from these measurements can
be used as input to autonomous guidance (source-finding) algorithms that navigate the mobile
platform towards its estimate of the source location. Before the implementation of mobile sensing

algorithms is discussed, a brief review of the different types of sensing devices is covered.



2.1.1 State of Gas Sensing for Point Measurements

Since the inception of pollutant source localization, methods involving the navigation along the
direction of increasing concentration gradients by using gas sensing devices (chemotaxis) have
remained at the forefront of plume tracking algorithms [50]. In general, gas concentration sensing
devices function by responding to changes in the gaseous ambient environment through alterations
in the sensor properties. Depending on the type of sensor and its composition, regulation of
additional information from the environment is possible by adjusting the sensor’s internal
properties (e.g., voltage, temperature). These devices can be used passively (without being
regulated) or actively [30], where the latter case often requires gicoter power consumption and
introduces time delays.

Considering the physical method of ambient sensin fo " use in applications involving
outdoor mobile robots, responses through conduction e:.i=t fr several material types including
metal oxides and various polymer composites and have b. =n demonstrated to perform effectively
while exposed to variable atmospheric condition:. Jther responsive sensing methods that have
been given less attention in this area include *he ''se of optics, acoustics, quartz micro-balancing
(QMB), and field effect transistors. In the ~ontext of mobile robotics, these are classified as
exteroreceptive sensors that guide the re_nonsive decision-making of the robot. The applicability
and advantages of the more prominen: /a: sensing devices used in environmental mobile robotics
are briefly discussed next.

e Metal oxide (MOX) ba.~a (as sensors provide a measure of concentration by correlating
the presence of a p=r*ficc!ar gas to the resulting electrical resistance on the sensor’s
semiconductiiy ~w S2ce [82, 83]. MOX sensors have an advantage of high sensitivity (for
some gases), a ucz«ul lifetime of 3-5 years, and low-cost for thin films. Alterations in
sensitivity occur based on several conditions, most influential of which are the thickness of
the film (thinner films result in higher sensitivities), and the addition of catalytic metals to
the oxide which increase the sensitivity for certain gases. Operating conditions require
temperatures between 250-500°C [82], limiting the potential for gas detection unless they
are preheated (a time-consuming process), and resulting in a greater power consumption.
Additional disadvantages include delayed recoveries upon removing the surrounding gas
[3], and their inability to perform in the presence of sulphur and ethanol [97].

e Conducting polymer gas sensors operate in a similar manner to MOX sensors, with the key



difference being a thin polymer film instead of a semiconducting film. The electrical

resistance of the film is increased upon expansion in the presence of vapor, with response

rates relying heavily on the rate of vapor diffusion [75, 7]. These sensors exist in two types:
intrinsic and extrinsic, which are combined with doped and composite fillers respectively
that increase conductivity [3]. Composite conducting polymers have been shown to offer
higher sensitivity and reproducibility [80], the capability of synthesizing a wide range of
materials for different organic gases, and functional operation at room temperature (an

improvement over MOX, as power consumption is lower). Major disadvantages include a

lower sensitivity than MOX sensors and aging effects resulua in sensor drift over their

useful lifetime.

e Quartz microbalance (QMB) sensors utilize internal a~oustic wave perturbations to sense
the presence of gas, and can detect several differ...* gc3es depending on the specific
affinity of the coating over a piezoelectric substraw. (typically quartz). These sensors offer
rapid response times [43], low power cons Im.ption, a wide selection of gases, and
increased lifetime compared to MOX z=n.rs. Associated disadvantages include relatively
low sensitivity, little protection agan.~. humidity, and poor signal to noise performance [7,
76].

With regard to the application ¢ cas sensors in mobile robot sensing networks, their most
common utility is to detect and me. sure the concentration of a known target gas (such as CO, CO2,
Cl) in an outdoor environment <0 hat the robot may autonomously locate its source with reliable
accuracy in the shortest am2'u.: uf time achievable, all while operating in the presence of ambient
noise and fluctuating .me.c<iological parameters. Specific to operation on land terrains, this
objective can be accomy:iished using wheeled and/or aerial vehicles (drones) independently or
cooperatively, through the use of intelligent guidance algorithms that ultimately aim to perform
efficiently by using the least amount of energy and resources within the imposed test parameters
and platform constraints. Accounting for these conditions, the most desirable gas sensor type
would have the ability to detect multiple gases, a relatively high sensitivity, low power
consumption, good performance in the presence of noise, and robustness to any possible weather
conditions (humidity, high temperature, etc). Of the sensors reviewed, conducting polymer gas
sensors may be the most useful for the described task, although MOX sensors have been used

successfully in outdoor experiments [93].



2.1.2 Difficulties in Environmental Sensing

Additional difficulties facing meteorological data-driven guidance algorithms are introduced by
the signal noise present in the ambient surroundings during data collection. For this particular
system, the performance can be evaluated based on the signal to noise ratio (Eq. 1) [86] where the
best performance corresponds to the highest ratio:

S Required Signal Power
> - Req g (1)

N Noise Power

For mobile sensing networks that must communicate wire.c"sly, a theoretical maximum
data rate in bits per second (known as the Shannon-Hartley Law, Eq. 2) exists for the surrounding

medium that is directly related to the signal to noise ratio:
C= B(I0g2(1+%‘.) 2

where C is the data rate and B is the bar.uv/idth in Hz. It is worth noting that several
filtering techniques (e.g, Kalman Filters, Wshout Filters) have been used to effectively
distinguish the actual sensor data from the har.kground noise, essentially mitigating this problem
for common environmental monitoriny 2pplications [47] where the noisy data is modelled by a

linear Gaussian state-space model.

2.2  Atmospheric Trancnet and Dispersion Modeling

Atmospheric boundary lav.. {A~5L) turbulence significantly influences the atmospheric dispersion
processes. The ABL i huiciice dynamics can be simulated using Numerical weather prediction
(NWP) models such as ‘weather Research and Forecast model (WRF) [102], which have the
capabilities to represent motions ranging from few meters to global scales of the atmosphere [73,
102]. WRF provides a powerful framework to capture the macro-scale features of the ABL. The
micro-scale turbulence is well represented using the large-eddy-simulation (LES) formulation
within WRF [12]. Recent studies have successfully used the concept of nesting of grids and
demonstrated WRF-LES as an effective tool to simulate field-scale ABL processes [15, 13]. One
way interaction between the ABL and the plume is achieved using passive tracer formulation in the
WRF-LES [78, 16]. Alternatively, the existing transport and dispersion models use the model
output from NWP models. Examples of such dispersion models include HYSPLIT (Hybrid Single



Particle Lagrangian Integrated Trajectory) (Stein et al. 2015 [106]), AERMOD (American
Meteorological Society/Environmental Protection Agency Regulatory Model) [28], and
FLEXPART (Flexible Particle dispersion) [108], to name a few.

An accurate representation of the atmospheric stability [40, 110, 25, 38] is important for a
realistic model of plume dispersion in realistic scenarios. For example, Bhaganagar and
Bhimireddy (2017) [11] demonstrated using the WRF model the significance of the role of
atmospheric factors that influenced the dispersion of the chemical plume released on the fateful
date of April 4, 2017, at 6.30 a.m. in the town of Khan Sheikhoun in northwestern region of Syria.
Their study is one of the first studies to use WRF based dispeicion models to estimate the
short-term transport of plume subject to realistic dispersion picesses. It should be noted that
presence of surface roughness or irregularities complicates \he cispersion processes [14, 10, 9],
and most of these analysis ignores the surface roughness.

In order to predict the dispersion of contaminants i, «ealistic atmospheric conditions, many
Atmospheric Transport and Dispersion (ATD) M loue's are available that aim to represent the
dispersion as specified by the type of source ~~a «mbient environmental conditions. Ranging from
simple analytical models represented by a s~ gle equation with few inputs to complex numerical
models made up of a series of equatior.. the computational time and effort involved increases
substantially. Several of these models a.e viequently used for predicting dispersion, including box
models [88], Gaussian plume mou-ls | 21], Lagrangian models [108], Eulerian dispersion models
[49], Dense gas models [46, 3-1. Computational Fluid Dynamics (CFD), and many recommended
alternatives provided by th~ ')C nvironmental Protection Agency (EPA). A comprehensive list of
several popular mode’s “n ST e applications is provided in table 1, followed by a description of the
ATD model types.

In a review of ATD modeling techniques [49], it is shown that in general there is a strong
correlation between gas and particle concentrations in open environments, while urban areas with
large vertical structures show a disparity in the dispersion of gases versus particles. Only
contaminants with particle diameters below 20 micrometers behave like gases (low settling
velocities) and are commonly used in dispersion models [46, 34]. These constraints limit the

selection of models for use with many source localization algorithms.

Table 1: ATD Model Types



Model Model | Topogra | Scale | Resolution | Types Pollutants Output
Type Name phy
Box AUROR | Simple L NA L CO, NO2, 1hr, 24hr,
AVITO SO2 lyr
CPB Simple L NA L G (Inert) 1hr, 24hr,
GEOME 1yr
T
PBM NA R NA PLA |G 1hr, 24hr,
| lyr
Gaussian | CALINE | Simple L Im L CO, NO2, 1hr, 8hr
Plume 4 ! TSP
HIWAY2 | Simple | L 1m an G 1hr
! (Non-reactive
)
AEROPO | Simple L '0-2000m | PV G,P 1hr
L
ADMS Complex | LR no limits PLA |GP 10mins-1
yr
AERMO Complex-ﬁ,R no limits PLA, [GP 1hr, 24hr,
D | V 1yr
Gaussian | CALPUF | Cuiomiex | R nolimits  |[P,LLA, |GP 1hr
Puff F \%
Lagrangi | GRAL complex | L 100m-20k | P,L G,P 10min-1h
an m r
Eulerian | GATOR | Simple LLR,G | NA PLA, [GP lhr-1yr
\%
CFD ARIA Complex | L Im+ PLA, |GP Real-time
Vv
GP/Box | OSPM Simple L NA L NOx,NO2,03 | 1hr
(Hybrid) ,CO




Scale L = local, R =regional, G = global
Source L=line, P=point, A=area, V=volume
Types

Pollutant | G=gases, P=particles

S

Box: Given initial meteorological conditions as input, simulates the formation of pollutants
within a ’box’ based on the conservation of mass. Does not provide information on the
local concentration of pollutants, but is capable of represenrin the chemistry and physics
of particle interactions.

Gaussian Plume: Simplest in complexity and least d :n.~nr.ing on computational resources,
the Gaussian Plume Dispersion model serves as 1 1chuamental representation of the
dispersion of a concentrated pollutant in open atmcucnheric environments. The Gaussian
model provides gas concentration values a. fve 'y point in three-dimensional space and is
derived from the turbulent diffusion -y ‘au~n under assumed conditions of homogeneity
and steady state flow. Dispersion in v = vertical direction is governed by atmospheric
stability (whose values are commo. !y determined based on Pasquill’s atmospheric stability
classes [81]), while dispersion i1 t1e horizontal plane is governed by molecular and eddy
diffusion. The dispersior c.~fficients are used to account for atmospheric turbulence by
considering the surroun.'ingy meteorological conditions (wind speed, solar radiation, and
cloud cover) as defu.oq 1ur the stability classes in Table 2. Based on a Gaussian distribution
of the plume cor.~enuation in the vertical and horizontal directions under steady state
conditions, these inodels consider the effects of diffusion and advection on dispersion, and
typically do not incorporate the physical processes of particle deposition or chemical
reactions. They are best suited for quickly calculating pollutant concentrations at hourly
intervals. They are not designed to model the dispersion under low wind conditions (< 2
m/s) or at sites close to the source (< 100 m), are unsuitable for far-field modelling, and
are unable to predict the time required for pollutants to travel from the source to receptors.
Gaussian Puff: A modification of the Gaussian Plume model that approximates the
pollutant emission as a series of puffs over time, allowing for a time-variant wind speed to

be implemented. Individual puffs follow a Gaussian dispersion, and the overall effect of




the emission is calculated by integrating the puffs with respect to time and summing their

contributions at receptor sites.

e Lagrangian: Defines a volume (’box’) region of air containing an initial concentration of

pollutants, then follows the trajectory of the box as it moves downwind and incorporates

changes in concentration due to the effects of dispersion, mean wind velocity, and

turbulence. These models are suitable for simple and complex terrains with homogenous or

heterogeneous/unstable meteorological conditions. Atmospheric turbulence is accounted

for by the calculation of the random motion of particles.

e CFD: Computational fluid dynamics (CFD) models provide « dynamically sophisticated

representation of fluid motion based on the conservation vf nass and momentum by using

finite difference and finite volume methods to resol* e the Navier-Stokes equations.

Although these models are able to represent the vora! wind flow field, the model

velocities and level of turbulence are highly senciu e to initial conditions.

Alongside ATD models, Numerical weathe r .re diction (NWP) models such as the Weather

Research and Forecast model (WRF) [1PZ} L-avide a powerful framework to capture the

macro-scale features of the Atmospheric Bu "adary Layer (ABL) with the capability to represent

motions ranging from few meters to gichal scales of the atmosphere [102]. The micro-scale

turbulence is well represented using e ‘arge-eddy-simulation (LES) formulation within WRF.

Alternatively, the existing transpo.* and dispersion models can use the model output from NWP

models, or in some instances, (e WP models can contain Eulerian or Lagrangian atmospheric

dispersion models.

 able 2: Pasquill Stability Classes and Criteria

Stability | Definition Surface Wind Daytime Solar Radiation | Nighttime Cloud
Class Speed Cover
A Very m/s mi/h Strong | Moderate | Slight | >50% | <50%
Unstable
B Unstable <2 <5 A A-B B F
Slightly 2-3 5-7 A-B B C E F
Unstable
D Neutral 3-5 7-11 B B-C C D E




E Slightly 5-6 11-13 C C-D D D D
Stable

F Stable > 6 > 13 C D D D D

2.2.1 Characteristics of Source Emissions
Sources of air pollutant emission belong to particular types that can be characterized based on
several factors, including source shape, motion characteristics, level of urbanization, and release
duration. The geometric shape of the emission source is one of the most influential factors on the
behavior of the plume.
e Point: a single identifiable source of emission approxima.~d s a localised release from a
zero-dimensional point that can be at ground-level o~ e'evz.ed (e.g., a combustion furnace /

gas stack [21])

e Line: one-dimensional array of emissions (e.g., 2xi.2ust from vehicles along a roadway)

e Area: emissions from a forest fire [26], evi nure ted vapors from a chemical spill of a
volatile liquid

e Volume: an area source with a third o, mension representing height (e.g., dust emissions

from wind erosion / gaseous emiss.ns from oil refineries [69])

Contaminant sources are not linr ite d to a single stationary position, and can be attached to a
moving body (exhaust from autc nchiles). The duration over which they are emitting a pollutant is
categorized into two separate CiosSes:

e Puff / intermittent so. ce: emissions that consist of a series of instantaneous pollutant
releases
e Continuous source: emissions that continuously exhaust a pollutant

The level of urbanization is dictated by the presence of human populations and large city
infrastructures. Highly urbanized areas with high population densities (cities) can form a heat
island that produces more heat than the surroundings causing the air to rise above the urban area
resulting in more turbulence (and therefore instability) in the atmosphere than adjacent areas.
Rural areas, on the other hand, have low population densities and typically do not have large-scale
infrastructures that affect the level of turbulence in the atmosphere.

In many instances where studies are focused on testing the performance of a source

localization algorithm using mobile sensing robots, attention is given to stationary continuous




point source emissions at ground-level in rural areas. The Gaussian Dispersion model is used most

often to predict the dispersion of contaminants due to its simplicity.

2.3 Autonomous Ground-Based Mobile Robots

In this paper, attention is given to unmanned land-based vehicles acting as autonomous
mobile-sensing networks for the source term estimation problem. While this primarily includes
unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV), a greater emphasis is
placed on UGVs performing the task of source localization [131. UAVs are more ideal for
attempting to track the interface of a plume and are briefly reviev:21 1. the corresponding section
on interface tracking. Considering the use of autonomous r:~u..2-based mobile platforms for
plume source localization, two significant efforts dependent upc data from multiple sensors exist:
simultaneous vehicle localization and mapping (SLA V) "33] and meteorological data-driven
guidance [27]. Because these efforts are performed cor.cun >ntly during operation, the amount of
data being received is significantly large, resu'ti-g 'n several difficulties when attempting to

interpret, transmit, and utilize the data gath~.rec .

2.3.1 Mobile Robot Localization ard N1apping
For a mobile robot to operate aut~no.musly in an unknown environment, it must be able to
simultaneously identify the pre<enc~ of any obstructions immediately surrounding it (mapping)
and determine its own position 1. 'auve to its surroundings (localization). Mapping requires the use
of perception systems ‘na. ailow the robot to extract multi-modal information from the
environment [61]. Perce,*ion systems can include vision-based imaging equipment (e.g., light or
thermal cameras) [2] ana/or optical sensors such as LIDAR [79]. Vision systems have the added
benefit of allowing external operators to view the robot’s surroundings and take over vehicle
guidance if necessary (tele-operation). Optical sensors offer the ability to create a map of the
environment and detect any nearby objects, which is crucial for efficient navigation when planning
the vehicle’s trajectory. While a combination of the two sensor types can ultimately increase the
perceptive capabilities of the robot, the computational efficiency acts as a harsh constraint, and a
trade-off between the two is often required.

Vehicle localization is accomplished by incorporating sensors that measure internal values

of the robot (e.g., robot heading, wheel speeds, wheel loads) to provide an estimate of the robot’s



position relative to its previous states and any surrounding landmarks. A myriad of devices can be
used simultaneously for this effort including GPS and Inertial Measurement Unit (IMU) sensors
[74], and wheel encoders. Typically, with regard to mobile platforms, localization efforts to
determine the robot’s current position historically include reading the wheel encoder values that
count wheel rotations over time to update the vehicle’s position, a technique known as dead
reckoning [6]. This basic method can prove unreliable however, as any slip that occurs between the
wheel and ground surfaces will not be read by the encoders, resulting in a position estimate that
drifts as the vehicle navigates. To prevent the accumulation of drift, GPS can be used to update the
known position of the robot in combination with sensor estimaucn techniques (e.g., Kalman

filtering [66]) that effectively improve the accuracy of the positiun estimate.

2.3.2 Difficulties in Mobile Robot Sensing

For a mobile-sensing network operating in outdoor envi, ~aments, it is clear that a considerable
amount of sensing devices are required (in additicn ¢ environmental sensors) to accomplish the
overall goal of autonomously localizing = nc'tutant source [71]. An increasingly complex
configuration of multi-modal sensing netw.v'ss requires reliable integration of sensor data (data
fusion) so that the robot’s perception o: its environment is both accurate and computationally
efficient [109]. Once the data from multipic sensors gets combined into a point cloud, it often must
be compressed and transmitted w. eless to a separate server for faster computational processing,
which can become a significar.* axFiculty depending on the bandwidth limitations imposed by the
particular operating envirznn. >t and the total number of sensors involved. These physical
constraints limit the .c~l-i™e capability of many proposed MSN architectures that attempt to
incorporate a large numk~, of sensing devices or additional mobile robots.

It is necessary in practice to simulate the expected environment for a mobile sensor
network so that the performance of its source-finding ability can be evaluated [8, 35]. The most
ideal scenario used for simulation testing includes a flat homogeneous terrain without
obstructions, multiple sensors excluding signal noise, a single continuous contaminant release, and
the exclusion of turbulence in the diffusion process. These ideal conditions are often far from
realistic, resulting in poor performance when experimentally testing in the field using real-time

systems.



3 Plume Source Localization

One of the major components to determining pollutant source term parameters involves deploying
autonomous unmanned vehicles that seek the location of the contaminant emission. Many strategic
methods have been employed to develop a reliable source localization algorithm that gathers
useful information about the nature of the dispersion. This information is continuously collected in

an attempt to reach a suitable dispersion model prediction, a process which is outlined in figure 1.

Figure 1: STE Components Diagrari

Testing source localization algorithms within a rer!i~tic simulation environment has
remained a key objective in validating their actual/:xu.2<ed performance when tested
experimentally or compared to experimental datasets [R5, 3], where the accuracy and resolution
of sensors in real-time is limited. In attempting to valiv.ate cny simulated results of this case in a
real environment, the effects of turbulence or i~e¢ roncentration’s dispersion creates a large
disparity in source seeking performance, ~rte1 resulting in the localization of local maximum
concentration values, a major difficultv whei. implementing gradient-based chemotaxis methods
[68, 105]. Thus, developments in srtirco-seeking approaches currently aim to increase the
accuracy and speed of localization ''nd. ¥ conditions involving both dispersion and advection, and
are largely dependent on accuriter,” simulating the aforementioned scenario using a variety of
Atmospheric Transport and L*spersion (ATD) modeling techniques [49]. An example of
combining CFD and MA 1 L.\b simulation for evaluating plume source localization techniques
within a complex indoor Jeometry (modeling contaminant propagation) is demonstrated in [8].

Source localization techniques have been widely tested for uniform, steady-state chemical
plumes moving solely due to diffusion. The most outdated yet fundamental form of source
localization is based around reactive global exploration, where mobile sensing networks follow
pre-defined pattern trajectories while sampling concentration measurements across the entire area
(domain) being searched. Aimed at improving the reliability, speed and efficiency of source
localization by autonomous mobile platforms, current plume tracking algorithms typically take
two main approaches, either through the use of optimization [101] or probabilistic techniques [20].
The more recent trend of combining the aforementioned strategies into a single hybrid algorithm is

discussed in the final subsection. At the end of each of the following sections, a table containing



referenced applications of the major algorithms pertaining to each particular methodology is listed.

Shown below, table 3 provides convenient abbreviations for several parameter descriptions.

Table 3: Algorithm Parameter Descriptions

C = concentration, W = wind velocity, M = mass flux,
Sensors: ) )

E = entropy, T = temperature, En = Electronic Nose, L = light
STE X,Y,Z = source location coordinates, Q = source emission strength,

t0 = time of release, t = duration of release, n = source quantity,
Parameters: ] o .

wd = surface wind direction, s = turbulent a,*fusion parameters

3.1 Exploration Methods
First reviewing the fundamental strategies that have liee.> ueveloped to trace the source of a
gas/chemical leak, reactive exploration-based methods an.> to deploy path-following robots that
measure concentration values across the entire ‘ryoijal) search-space, adjusting their path in
response to detected concentration levels. 7n. pi~cess is essentially performed in three phases
[94]:
1. Initially deployed outside of the cu.taminant area, follow a preliminary search direction
until contact with the plume is 113 je
2. Using measured concent’aun values, trace the source of the chemical release by
performing a unique exy'oration strategy
3. After finding a glrua: oeak concentration value, confirm the predicted location of the
emission
While this appruach will theoretically always find the source location (after the entire
domain is explored), it is often too time-consuming to have real practical value in many cases. The
more successful global-searching reactive exploration-based strategies have attempted to mimic
the behavior of biological organisms that sense the concentration and wind in their immediate
surroundings and use this information to follow the direction of increasing concentration (termed
chemotaxis and anemotaxis). Relying heavily on the assumption of smooth, positive concentration
gradients in the source direction, chemotaxic-only methods tend to fail in the presence of turbulent
conditions. Combining the use of biologically-inspired anemotaxis methods such as those in table
4 (Zigzag [51], upwind searching [92], silkworm moth [93]) has offered improvements and new



localization techniques altogether, but not definitive success.

Table 4: Exploration / Direct Search Method Algorithms

Algorithm Date | Parameters | Sensors | Gradient | References
Zig-zag 1994 | x,y,z w,C Yes [51]
Upwind Search 1995 | x,y,z w No [92]
E. coli 1996 | x,y,z C No [48]
Silkworm Moth | 1992 | x,y,z,n w,C Yes [55]
Braitenberg-Style | 1993 | x,y,2,Q C Yes [96]

3.2  Optimization Methods

The objective of optimization is to minimize a cost ‘unc‘ion that can represent a number of
different objectives (minimization of the total eneray cosi, source location estimate error, etc.).
Reviewed in [50], when applied to source localiza.* yn optimization approaches aim to estimate a
single source location by minimizing an ok;ec.ive, zost function that aims to match the measured
and predicted concentration values of an Atmc-oheric Dispersion Transport (ATD) model through
an iterative process. Listed in order m increasing complexity, several subcategories exist:
direct-search methods [123], gradie~t-c ir1bing methods [100], and meta-heuristic methods [4, 44,
45].

The simplest category, diect-searching, involves guiding the mobile robot along a
pre-planned path trajecto’ y u.til the gas concentration is detected, followed by re-initializing the
path at the location of th. highest detected concentration while aiming to minimize the objective
function. Because of its simplicity, this algorithm works well (albeit rather slowly) for steady
dispersion models, but fails to navigate in rapidly changing turbulent conditions. However, this
method does not require an initial estimate of the source location, benefiting from its global
searching strategy to reduce the chance of converging in a local maximum. Gradient-climbing
approaches (listed in tables 4 and 5) have shown success in localizing steady plumes driven by
diffusion where smooth concentration gradients exist throughout the plume. Regarding
implementation in conditions with advection, these approaches require a highly approximate
initial estimate of the source location and are otherwise revealed to have issues in converging at

sites of local maximum concentrations. Strategies avoiding the need for good initial estimates,



classified as Meta-heuristics, prove to excel over gradient-climbing methodologies.
An example cost function used in Least Squares Estimation that aims to iteratively
minimise the sum of the squared residuals of the observed and predicted concentration

measurements is shown in Eq. 3:
N
J= Z(Cn - Dn)2 (3)
n=1

To minimize this function (which is dependent on the spatial locations during
measurement), the gradient of J (cost) is computed and set equal to zero, allowing for an estimate
of the direction of highest increasing concentration. This procc.~ is repeated until a single
optimized solution (in this case, the estimated source locatio) is found. Thus, optimization
algorithms are a useful tool for gradient-climbing approaches

Two common optimization-based gradient-clir:>ing techniques that are reliant upon
measurements of chemical concentration inclune Re-normalization [52] and the
Brodyen-Fletcher-Goldfarb-Shanno algorithm (B-G3) [24, 37, 41, 98]. Renormalization is an
extension of the more basic Least Squares F<ti,nation optimization strategy while concurrently
utilizing weighted measurements of a conce ~t.ation monitoring network based on its arrangement
to reduce the total search space [52]. Ti.'s is a fundamental improvement in attempting to avoid
convergence at sites of local maximuia co-.centration, however its success has not been definitive.
The BFGS algorithm belongs to “he 1wamily of quasi-Newton optimization techniques [98] that
offers improvements over Nev1to,>’s method for this particular application by approximating the
inverse of the Hessian m2tri. “nereby improving computational efficiency and increasing the
speed at which the fur«*io,> e:\trema can be estimated. Again, the algorithm is subject to converge
incorrectly when used ir :pendently.

The addition of environmental sensing beyond solely gas concentration has resulted in the
development of more sophisticated meta-heuristic algorithms built off of the fundamental
concepts established with chemotaxis. An improvement to global pattern searching, the simulated
annealing (SA) algorithm [60] introduced by Kirkpatrick et al. [60] aims to bring the system from
an initial state to a convergent state of minimum possible energy where accepted state changes are
based on a Boltzmann probability Distribution [114]. Implementing the SA algorithm for the
purpose of source localization, Thomson et al. [114] aimed to determine the location of a source

and its emission rate while measuring gas concentration and wind velocity. Newman et al. [39]



used SA to determine contaminant zones in underground water, and compared its performance
with a Minimum Relative Entropy (MRE) method [67], ultimately arriving at an optimal solution
being a hybrid of the two, where MRE followed SA to provide confidence limits of a refined
solution.

Another popular technique used in many STE processes is known as the Genetic algorithm
(GA). Representative of the natural evolution process [39], this evolutionary computation method
is a global optimization technique (stochastic search method) that generates new solution
candidates after multiple iterations (generations) so as to avoid the issue of local maximum
convergence. With regard to source localization, the algorithm optin.izes a combination of source
parameters (location, strength, surface wind direction) that provi e t.e best fit between measured
concentration data and model-predicted concentration valies is determined by an objective

function, such as Eq. 4:

. J(n(aC, +1)~Inf2k, +1))
JIn(cR, +1)

where C. represents the model-przaiteu concentrations, R, represents the measured

Cos (4)

concentration data for an individual recepto. r, and « is a scalar value. In one of its most
successful implementations [5], the G« vas used to estimate the source terms of multiple releases
with a better estimate compared te >overal optimization and probabilistic-based approaches [84].
The process functions as follow«

1. Represent the problem va iable domain as a chromosome of fixed length representing a
combination of sc urce term parameters.
Define a fitness fu. ction to measure the performance of an individual chromosome (Eq. 4).
Randomly generate an initial population of chromosomes of size N.
Calculate the fitness of each individual chromosome.
Select a pair of chromosomes with the highest fitness probabilities for mating.

Create offspring chromosomes to replace the original chromosomes.

N o g bk~ D

Recalculate individual fitness and repeat the process until convergence

Another popular optimization algorithm for detecting multiple emission sources with
multiple cooperative robots is known as Glow-Swarm Optimization, although its use of large
numbers of sensing platforms is infeasible for practical applications.

Several modifications to these fundamental gradient-based optimization algorithms aimed



at improving source term estimates include the use of wind velocity data within the simulation
environment [4], using known prior information and null sensor readings to limit the global search
space, and more complex ATD models beyond the simple Gaussian dispersion model [17]. Many
of the more successful optimization methods showed a large discrepancy between simulation and
experimental results, owing to reliance on the ATD model and knowledge of the atmospheric
conditions/stability, which includes a wide range of meteorological parameters that are subject to
noise during measurement. Appeal can be seen in the comparative simplicity of optimization and
global-searching methods as they often have the benefit of reduced computational requirements.
However, a large portion of these algorithms (table 5) utilize gi.dient calculations that have
demonstrated a severe shortcoming in their tendency to converge tow irds areas of local maximum
concentration. Because optimization techniques only produ~e a sigle optimized solution by their
design, they cannot reliably be used as a standalone appr.zarn.

Local observations of meteorological data are cypically conducted within tens of
kilometers from the source of emission, captirir.,g data that is heavily influenced by the
surrounding environmental weather conditir~s |22]. Global forecast observations do not aim to
capture the smaller localised regional effec:s of the environmental conditions, but instead make

predictions over hundreds of square kilo: ~eters.

Table & Optimization Method Algorithms

Algorithm Date ‘.”amms Sensors | Grad | Evaluation | Domain | Refs

| Method
Y Data from
IIT diffusion
experiment

conducted at

Least Squares Delhi for
o 2012 x,y,z,Q,n | C Yes - [99]
Estimation (LSE) surface
release of

tracer SF6 in
low-wind

conditions.




Re-normalization

2009

X,y,2,Q

W,C, T

Yes

Observations
taken in the
tracer
diffusion
experiment
conducted
for surface
releases of

trace: SF6 in

Fobruary
1931 at 1T
Delhi in
low-wind

conditions.

[100]

Pattern Search
Method (PSM)

2010

XY,2,Q

No

Synthetic:
Gaussian
Puff Model

Local

[123]

Limited-memory
BFGS

2015

| X,y 2,Q

Yes

Synthetic:
SCIPUFF,
Gaussian
Plume.
Experimental
data: FFTO7

Local

[17]

Simulated
Annealing (SA)

2007

X,y,Z,Q

C,W

Yes

Multiple
surveys in
the Middle
East, each of
which
covered
multiple

hundreds of

Global

[114]




square

kilometres.
Synthetic:
Gaussian
Genetic Plume
) 2007 X,y,Q CWwW No ) Global [4]
Algorithm (GA) model. Twin

experiments

data.

3.3 Probabilistic Bayesian-Inference Methods

Unlike optimization methods that provide a single estimate™ <olution of the source location,
Bayesian Inference-based STE methods produce a probuhnity density function (PDF) of the
estimated source parameters with associated confiden.e i>vels to account for any uncertainties
obtained from the observed data, which is modelle.! us i.igh-dimensional and non-Gaussian. Bayes
theorem estimates the probability (or uncer.a. ty, of an assumption or hypothesis being correct
given new observed information [113]. Wiu regard to Bayesian Inference applied to STE, the
interpretation of Bayes Theorem can be w.*tten as Eq. 5:

: taling v
Prior x_lee_ho_:> P(O| DM, I)OZP(6?| )xP(D|6,M,1)
Evider.>e P(D|M,I)

Posterior o

()

Where 6 is the hypntnesis (inferred source parameters) being estimated, given
observations of data (me~su au concentrations or other parameters treated as random variables)
D, the ATD model M , awu any related prior information | . The prior distribution expresses
what is known about the 11ypothesis before collecting any data measurements. If there is no known
prior information, this probability becomes a uniform distribution. The likelihood function, also
known as the sampling distribution [23], quantifies the probability of the data (measured
concentration) being correct assuming that the hypothesis (predicted concentration) is true. The
reverse statement is true for the posterior distribution, which expresses the probability of the
hypothesis being true, assuming that the given data, model, and prior information is correct.
Lastly, the evidence, or marginal likelihood, measures the support for a particular hypothesis. For
the typical case of only a single source, this term is dropped, simplifying equation 5:

Posterior « Prior x Likelihood = P(8|D,M,1)aP(@|1)xP(D|M,1) (6)




When applied to STE, each term can be updated sequentially via sampling methods, and
the posterior distribution is of primary interest. The use of sequential Monte Carlo (MC) sampling
techniques [31] can be applied to the Bayesian-based STE approach to feasibly produce an
estimate of the posterior PDF for the given source parameters in real-time, which allows for an
accurate representation of the parameter estimates and uncertainty. In the presence of many
high-dimensional parameters being estimated, Markov Chain Monte Carlo (MCMC) and
Sequential Monte Carlo (SMC) sampling techniques offer reliable computational efficiency and
are not subject to linearity or Gaussian constraints.

First examining MCMC, the sampling process begins by canstructing a Markov Chain
from an initial starting point (which may be a random walk in t.e al sence of prior information),
proposing inferences from this current ‘link’ and evaluating t.eir ikelihood of being the next link
based on established acceptance criteria (commonly ger :ate Y by the Metropolis-Hastings (MH)
algorithm [72]). MCMC has been tested in real environme =@l applications, with its success being
highly dependent on correctly specifying dispe siur model errors [120]. SMC methods are
simulation-based approaches that essential’ p~rform the same routine as MCMC with an
advantage in computational efficiency as in\>rence proposals are generated in parallel. With SMC,
new data can be incorporated into the clgorithmic process immediately upon availability and
assigned a weight (known as importaiice ¢ampling) to update the posterior distribution.

For Bayesian-based apprnc~hes to STE, a disparity exists between results from simulation
and experiments (which is tree nr optimization approaches as well), in this case due to the
inaccuracy of the mode!’~ .i“clihood function and random sensor noise. By requiring a
back-propagation of ti. mo™.e model based on the measured concentration values to compute the
likelihood function, me~y of these algorithms prove to be too demanding of computational
resources for real-time applications [90]. To mitigate the issues arising from the unknown
likelihood function, Lane et al. [62] used Approximate Bayesian Computation (ABC) as a
likelihood-free rejection sampling method for data approximation to successfully estimate the
source strength, location, and time of a single release with the SMC process.

Some Bayesian-based approaches to STE that incorporate additional algorithmic strategies
include Differential evolution Monte Carlo (DEMC), Polynomial Chaos Expansion (PCE), and
Polynomial Chaos Quadrature (PCQ). DEMC uses the genetic algorithm in combination with
MCMC to determine the jump proposition for multiple Markov chains [112]. PCE and PCQ



combine the Bayesian approach to STE with concepts extended from homogeneous evolutionary
chaos [118]. PCE is a non-sampling based method that suffers from difficulties in evaluating
nonlinear integration steps, while PCQ uses Monte Carlo sampling to overcome this pitfall.
DEMC and PCQ have both been used for attempting STE with experimental data as described in
Table 6.

Ultimately, probabilistic methods (table 6) often have an advantage over optimization in
that they provide a measure of uncertainty along with the estimate for the source term, which can
overcome the major issue of convergence at sites of a local maximum concentration. This
uncertainty estimate, which can be produced by a probability disu*bution function, allows for
sequential update-based algorithms to determine the desirable ch~ice of direction at each iterative
step in the source-seeking process. Because many of these algritt ms require an initial estimate of
the source location, a poor first choice can consequently :>au *o failure. To improve the accuracy
of the initial estimate, incorporating meteorological daw. dcquired by external sources such as
static sensor networks, satellites, and weather statio"s allows for the reduction of the designated

search-space and provides a general idea of e\ » the source is located.

Table 6: Probabilistic Cayesian-Inference Method Algorithms

Algorithm | Date Params Sensurs | Likelihood | Evaluation Method Refs
MCMC 2007 X,y,Q #C Yes Mock urban setting test [57]
‘ (MUST), full-scale field
experiment (joint Urban
2003)
MCMC 2012 Xy,2,Qs | C Yes Synthetic: Gaussian [20]
Plume
SMC 2013 x,y,2,Qs | C Yes SCIPUFF, Gaussian Puff | [117]
DEMC 2009 X,y,t,Q C Yes Gaussian Plume [91]
PCE 2013 X,y C Yes SCIPUFF [68]
PCQ 2012 X,y C Yes Numerical Simulation [1]
ABC 2009 x,y,z,nt0 | W,C No Bar-sensor model, [62]
Gaussian Plume




3.4 Hybrid Source Localization Methods

Combining multiple approaches into a single "hybrid’ algorithm (table 7) is certainly an ongoing

trend that aims to handle the many difficulties produced by turbulence in real-world experiments.

The spectrum of current methods used for improving source seeking algorithms embody the

combination of traditional gas-sensing techniques (which have proven successful for the steady

state case) with additional sensing of other environmental parameters. Additional measurable

parameters that have inspired new localization techniques include wind velocity (anemotaxis)

[17], mass flux (fluxotaxis) [77], and entropy (infotaxis) [67]. With an increasing amount of

available sensors and data-fusion efforts offering improvements in 1= perceptive capabilities of

mobile sensing platforms, along with a vast collection of >nroing weather observations,

autonomous source localization strategies continue to evolve .n both complexity and capability.

Table 7: Hybrid Aloonams

Algorithm Date Params T'S¢nsors Evaluation Method | Refs
Minimum Relative | 2014 X,y,z,0 | C Gaussian Plume, [67]
Entropy (MRE) + Prairie Grass emission
Particle Swarm experiment (Barad,
Optimization (PSO) 1958)

Nelder-Meade 2007 —ﬁy,Q,Wd c,w Synthetic: Gaussian [44]
Downhill Simplex ‘ Plume, field data.

(NMDS) + Genetic

Algorithm (GA)

Approximate zul5 X,Y,Z,S C Experimental datasets | [90]

Bayesian
Computation (ABC)
+ Sequential Monte
Carlo (SMC)

collected by
COANDA Research
& Development
Corporation. Dataset
1 was collected in the
absence of any
obstacles mimicking a

rural terrain. Dataset 2




was collected in the
presence of mm high
obstacles mimicking

an urban terrain.

4 Plume Interface Tracking

Sharing the overall objective of obtaining accurate meteorological data to sufficiently estimate the
nature of a contaminant plume’s dispersion, the tracking of a plumr’s boundary/edge/interface can
also be accomplished autonomously through the deployment ¢ u~manned vehicles. Useful
applications include monitoring oil spills [29], nuclear radiat’c wovels [115], growth of harmful
algae [70], and estimating the spread of contaminant pol'.tai.:s and volcanic ash clouds [107].
Similar in strategy to source localization, technig'es AJeveloped for this purpose utilize
measurements of concentration in the region of interes. at 1 xdividual points with a single vehicle
[22] or multiple points with cooperative vehicles [<"1 7.1 order to approximate the spatial extent of
the contaminated area. For the task of fracking the interface of a developing plume, many
strategies require the wuse of multiple -~ooperative (swarm) robots. Because of the
three-dimensional nature of the dispzsiun in open environments, unmanned aerial vehicles
(UAVs) offer a practical solution t= me~curing many points along the contour when compared to
UGVs alone, which cannot feasi)ly ~ollect data at variable altitudes.

Optimization methors s\ milar to those described for source localization have also been
used with mobile sensors fo, boundary tracking by minimizing a cost function representing the
difference between the ac~ired and measured concentration values at the estimated contour. In its
most successful application, a collaborative algorithm was used that aimed to minimize the
centroid distance of the plume. Implemented by Srinivisan et al. in [104] and renamed Adaptive
Contour Estimation (ACE), the centroid location of the contour was estimated by utilizing
information about the concentration gradient to guide the mobile sensors using an adaptive
sampling algorithm. Several other estimation and control approaches have also been used for
boundary tracking using mobile sensors, and the more successful methods are discussed next. In
most cases, the simulation tests were performed with clearly defined boundaries and no account
for sensor noise, limiting their practicality in field experiments.

First examining the fundamental control algorithms, perhaps the simplest is known as




bang-bang control. For boundary tracking there exist only two system states that alternate when
the vehicle crosses the contour edge. In a basic implementation, Kemp et al. [58] used bang-bang
control requiring a single concentration sensor with an unmanned underwater vehicle (UUV) to
track an underwater boundary. Several sources of error exist with this method, where failure to
consistently track the boundary can occur due to large redirection angles, sensor noise, and narrow
bottlenecks along the edge. Improvements proposed by Bertozzi et al. [53] aimed at correcting the
turning (redirection) angle which has been extended to cases involving multiple vehicles [54],
along with the addition of a cumulative sum algorithm for the purpose of reducing the effects of
noise. This particular control algorithm has been used for the purpos: of monitoring an oil spill, a
radiation field [115], and even a dynamic plume [22] (with the ad.'itio 1 of a static-sensor network).
With the exception of the latter application, this method ha: se¢n greater success in regions of
quasi-static contaminant fields, where the movement of ..~ Laundary is much slower than that of
the vehicle’s speed. An extension of bang-bang contrni, siiding mode control acts in a similar
manner, redirecting the vehicle at a ‘sliding dista ¢’ away from the boundary with a threshold
value specified by the concentration densi*;’ roar the edge. Several common applications of
boundary tracking showed that this algoritn.™ was particularly robust to typical uncertainties seen
with bang-bang control.

At the peak of control law trac<’a¢ dlgorithms, multiple cooperative robots have been used
in formation to track level sets ¢~ a nioving field [122]. The fixed-shape formation control of
multiple Newtonian particles c'lo.ed for many additional steering control laws to be developed
using differential geometri~ ap~voaches that controlled the center of formation to detect and track
curvatures based on we c<tmated concentration gradient at multiple points simultaneously.
Additionally, this methc~! has been extended to track 3-D surfaces using multiple UAVs [119].
Other developments attempt to estimate and visualize the boundary curvature [26]. Demonstrating
the diversity of mathematical approaches to boundary tracking, Neural Networks (NN) have also
been combined with a robust controller to allow a mobile robot to track a moving boundary and

estimate the unknown model parameters [111].

5 Conclusion

Regardless of the strategic approach taken by mobile sensing networks, there are still many



limitations associated with accurately testing the source localization algorithm’s performance in
simulation against field trials due to constraints on CPU capabilities including processing,
available memory, and wireless data communication for testing in both simulation environments
and real-time field experiments. As computational efficiency stretches even further alongside
technological developments, and the above limitations are made less restrictive, then the overall
capabilities of mobile sensing networks can feasibly extend to include more complex hybrid
data-fusion algorithms and additional sensors and sensing platforms (cooperative robots).
Emerging trends that follow these expectations include:

e Combining several algorithms into a hybrid method to utilize their individual benefits and
increase reliability.

e Increasing the complexity of the atmospheric dispersicn r.odel beyond the simple
Gaussian Plume case by using CFD model gener-..™ ,lumes that incorporate the effects of
turbulence.

e Utilizing other meteorological sensor data n ac'dition to gas concentration (wind velocity
and direction, mass flux, entropy, turuclent intensity), within the bounds of wirelessly

transmitting a larger amount of data .’ a high enough frequency.
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Highlights

For dynamic tracking of plume in space-and time, the data collection using mobile sensing
increases the detection accuracy compared to meteorological towers.

Conducting polymer gas sensors are most efficient for autonomous robots to locate the source
in the least amount of time.

Atmospheric turbulence influences the dispersion processes, hence, obtaining data using
Large-eddy-simulation framework within numerical weather prediction models increases the
accuracy of the dispersion models significantly.

Optimal multi-sensor fusion algorithms are critical to accomplish the goal of autonomously
localizing the pollutant source.

Bayesian, Optimization, and Hybrid source-finding methods <"~ reviewed.
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