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Abstract. Local atmospheric conditions including wind speed and turbulence significantly 

influence the dispersion of pollutant plumes, introducing severe difficulties in predicting its 

trajectory, potential evacuation sites, and ultimately containment efforts. Ongoing developments 

in estimating rapid contaminant dispersion include the combined use of local meteorological data 

along with plume-source localization and identification via autonomous data-driven 

mobile-sensing robotic/vehicular platforms. With a vast number of available 

environmental-sensing mobile platforms, contaminant dispersion scenarios, and source-finding 

algorithms, selection of the ideal configuration for autonomous source localization involves a 

great deal of opportunity alongside uncertainty. This paper aims to review the significant 

developments of unmanned ground-based mobile sensing network configurations and autonomous 

data acquisition strategies commonly used for the task of gaseous plume source localization. 

 

Keywords: Autonomous plume source localization algorithms, mobile environmental 

sensing networks, unmanned ground vehicles, atmospheric dispersion modelling applications, 

source term estimation 

 

1 Introduction 

In hazardous situations involving the emission of Chemical, Biological, Radiological and Nuclear 

(CBRN) pollutants, containment of the release requires locating and neutralizing the source [87]. 

To characterise the nature of the release, information must be gathered through a process known as 

source term estimation (STE) that aims to estimate several parameters including the source 

location, emission strength, time of release, pollutant type, and dispersion behavior by generating a 
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predictive model of the contaminant dispersion [17]. In realistic atmospheric conditions involving 

advection, the effect of turbulence on dispersion of pollutant plumes [56] introduces many 

difficulties in determining the source parameters based on its evolving trajectory [89, 21] which 

can develop in a range of environments including: 

 Above-ground terrains: where chemical dispersion events [65] and forest fires [26] pose 

threatening hazards to nearby populations [36]. 

 Subsurface terrains: where gas leaks can cause the accumulation of a concentrated toxin 

[77]. Screening oil and gas reserves for hydrocarbon leaks is an additional slightly less 

threatening example [114]. 

 Marine environments: where applications include monitoring the dispersion of oil spills 

[29] and ocean temperatures [121] at the surface, along with underwater surveillance [58]. 

Emphasizing STE in above-ground terrains, current approaches for predicting the 

characteristics of contaminant dispersion include the combined use of local meteorological data 

collected from static sensing grids and weather stations / met. towers [50], mapping global weather 

conditions from satellite imaging [107], and the collection of environmental data from a range of 

sensors mounted to unmanned vehicles, termed mobile-sensing networks (MSN). The data 

collected from these measurements can then be used in two types of models: 

 Receptor models: Given concentration data measurements, provide an estimation of the 

source parameters. 

 Dispersion models: Given source parameters and known meteorological conditions, 

provide a prediction of contaminant concentration at some distance away from the source. 

Measurements of meteorological data can be either fixed in location by a network of static 

sensors or collected at variable locations over time by mobile sensors. Static sensor networks 

provide a means of continuously collecting accurate meteorological data, however they are limited 

in applicability by their fixed locations [50], where data collection towers can be separated by a 

displacement of 50 meters. This is a crucial issue for the STE process, as the development of a 

reliable model is dependent upon known measurements near the site of release. To gather a larger 

set of data within a moving plume, mobile sensing devices are required, and can be carried by 

either a human or vehicle, guided remotely or autonomously. Due to the hazardous nature of 

exposure involved with the former handheld method, mobile-sensing offers the much needed 

safety to limit potential contact with noxious elements. The mobile-sensing approach is typically 
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accomplished through the use of autonomous robots [27] and/or unmanned vehicles operating 

independently or cooperatively (swarm robotics). Unmanned vehicles are capable of reliably 

traversing harsh terrains [79] that are difficult or impossible for humans to explore due to the 

surface roughness belonging to many environmental landscapes. Their ability to navigate near the 

source location is therefore critical, and has been given significant attention in this field of research 

as a result. 

Recent trends, ongoing developments, and associated difficulties in atmospheric 

environmental sensing using autonomous unmanned mobile ground robots for gaseous plume 

source detection and interface identification is the primary focus of this review. The scope of each 

effort as they relate to the primary task of source localization is examined in the following 

subsections, along with the associated areas of difficulty that they introduce. This paper is 

arranged as follows: in section 2.1, methods of sensing environmental variables are reviewed from 

past to present. The measurement data can be used as input to guidance algorithms that navigate 

the mobile platform towards its estimate of the source location. Before the implementation of 

mobile sensing algorithms is discussed, a brief outline of the different types of sensing devices and 

their functionality is examined, in addition to the difficulties associated with environmental 

monitoring. In order to predict the dispersion of contaminants in realistic atmospheric conditions, 

many Atmospheric Transport and Dispersion (ATD) Models are available that aim to represent the 

dispersion as specified by the type of source and ambient environmental conditions. The approach 

to modeling the dispersion of a contaminant within its environment is covered in section 2.2, 

where the dispersion characteristics are largely dependent upon the level of atmospheric stability. 

In this review, attention is given primarily to unmanned land-based vehicles acting as 

autonomous mobile-sensing networks for the source term estimation problem. While this 

primarily includes unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV), a 

greater emphasis is placed on UGV’s performing the task of source localization. The major aspects 

of autonomous mobile land-based robots used for source localization are reviewed in section 2.3 

including vehicle localization, mapping, and corresponding areas of difficulty. One major 

component in determining pollutant source term parameters involves deploying autonomous 

unmanned vehicles that seek the location of the contaminant emission. Many strategic methods 

have been employed to develop a reliable source localization algorithm that gathers useful 

information about the nature of the dispersion. These strategies fall into several distinguishable 
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methodologies including exploration-based, optimization, probabilistic, and hybrid approaches. In 

section 3, a review of source localization algorithms aims to cover several developing strategies 

for this crucial task. 

Sharing the overall objective of obtaining accurate meteorological data to sufficiently 

estimate the nature of a contaminant plume’s dispersion, the tracking of a plume’s 

boundary/edge/interface can also be accomplished autonomously through the deployment of 

unmanned vehicles. Techniques developed for this purpose utilize measurements of concentration 

in the region of interest at individual points with a single vehicle or multiple points with 

cooperative vehicles in order to approximate the spatial extent of the contaminated area. In section 

4, approaches to tracking the boundary (or interface) of a dispersing plume are listed and covered 

in brief detail to highlight the practical use of many unmanned robotic systems. Finally, the paper 

concludes by addressing the current limitations of source localization strategies using UGVs as 

mobile sensing networks, then provides an outlook on the emerging trends and expectations to 

accomplishing source term estimation using autonomous robots. 

While there are many topics relevant to source term estimation, some useful information 

specific to deploying UGV’s for applications involving gas sensing can be found in [18, 19, 7, 30]. 

The topics of atmospheric dispersion modeling [49, 63] and simulation techniques for plume 

source localization [8] also share importance for the current discussion. Several applications of 

source localization algorithms using mobile sensors are reviewed in [93, 50, 95, 59]. 

 

2 Environmental Sensing Using Mobile Robots 

2.1 Environmental Sensing and Data Acquisition 

Sensor measurements of environmental parameters for pollutant source localization commonly 

include gas concentration [64], wind speed and direction [51], turbulent intensity, temperature, 

acoustics [103], humidity, mass flux [77], entropy [116], and radiation [42], depending on the 

nature of the plume and the ambient conditions. The data collected from these measurements can 

be used as input to autonomous guidance (source-finding) algorithms that navigate the mobile 

platform towards its estimate of the source location. Before the implementation of mobile sensing 

algorithms is discussed, a brief review of the different types of sensing devices is covered. 
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2.1.1 State of Gas Sensing for Point Measurements 

Since the inception of pollutant source localization, methods involving the navigation along the 

direction of increasing concentration gradients by using gas sensing devices (chemotaxis) have 

remained at the forefront of plume tracking algorithms [50]. In general, gas concentration sensing 

devices function by responding to changes in the gaseous ambient environment through alterations 

in the sensor properties. Depending on the type of sensor and its composition, regulation of 

additional information from the environment is possible by adjusting the sensor’s internal 

properties (e.g., voltage, temperature). These devices can be used passively (without being 

regulated) or actively [30], where the latter case often requires greater power consumption and 

introduces time delays. 

Considering the physical method of ambient sensing for use in applications involving 

outdoor mobile robots, responses through conduction exist for several material types including 

metal oxides and various polymer composites and have been demonstrated to perform effectively 

while exposed to variable atmospheric conditions. Other responsive sensing methods that have 

been given less attention in this area include the use of optics, acoustics, quartz micro-balancing 

(QMB), and field effect transistors. In the context of mobile robotics, these are classified as 

exteroreceptive sensors that guide the responsive decision-making of the robot. The applicability 

and advantages of the more prominent gas sensing devices used in environmental mobile robotics 

are briefly discussed next. 

 Metal oxide (MOX) based gas sensors provide a measure of concentration by correlating 

the presence of a particular gas to the resulting electrical resistance on the sensor’s 

semiconducting surface [82, 83]. MOX sensors have an advantage of high sensitivity (for 

some gases), a useful lifetime of 3-5 years, and low-cost for thin films. Alterations in 

sensitivity occur based on several conditions, most influential of which are the thickness of 

the film (thinner films result in higher sensitivities), and the addition of catalytic metals to 

the oxide which increase the sensitivity for certain gases. Operating conditions require 

temperatures between 250-500°C [82], limiting the potential for gas detection unless they 

are preheated (a time-consuming process), and resulting in a greater power consumption. 

Additional disadvantages include delayed recoveries upon removing the surrounding gas 

[3], and their inability to perform in the presence of sulphur and ethanol [97]. 

 Conducting polymer gas sensors operate in a similar manner to MOX sensors, with the key 
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difference being a thin polymer film instead of a semiconducting film. The electrical 

resistance of the film is increased upon expansion in the presence of vapor, with response 

rates relying heavily on the rate of vapor diffusion [75, 7]. These sensors exist in two types: 

intrinsic and extrinsic, which are combined with doped and composite fillers respectively 

that increase conductivity [3]. Composite conducting polymers have been shown to offer 

higher sensitivity and reproducibility [80], the capability of synthesizing a wide range of 

materials for different organic gases, and functional operation at room temperature (an 

improvement over MOX, as power consumption is lower). Major disadvantages include a 

lower sensitivity than MOX sensors and aging effects resulting in sensor drift over their 

useful lifetime. 

 Quartz microbalance (QMB) sensors utilize internal acoustic wave perturbations to sense 

the presence of gas, and can detect several different gases depending on the specific 

affinity of the coating over a piezoelectric substrate (typically quartz). These sensors offer 

rapid response times [43], low power consumption, a wide selection of gases, and 

increased lifetime compared to MOX sensors. Associated disadvantages include relatively 

low sensitivity, little protection against humidity, and poor signal to noise performance [7, 

76]. 

With regard to the application of gas sensors in mobile robot sensing networks, their most 

common utility is to detect and measure the concentration of a known target gas (such as CO, CO2, 

Cl) in an outdoor environment so that the robot may autonomously locate its source with reliable 

accuracy in the shortest amount of time achievable, all while operating in the presence of ambient 

noise and fluctuating meteorological parameters. Specific to operation on land terrains, this 

objective can be accomplished using wheeled and/or aerial vehicles (drones) independently or 

cooperatively, through the use of intelligent guidance algorithms that ultimately aim to perform 

efficiently by using the least amount of energy and resources within the imposed test parameters 

and platform constraints. Accounting for these conditions, the most desirable gas sensor type 

would have the ability to detect multiple gases, a relatively high sensitivity, low power 

consumption, good performance in the presence of noise, and robustness to any possible weather 

conditions (humidity, high temperature, etc). Of the sensors reviewed, conducting polymer gas 

sensors may be the most useful for the described task, although MOX sensors have been used 

successfully in outdoor experiments [93]. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

2.1.2 Difficulties in Environmental Sensing 

Additional difficulties facing meteorological data-driven guidance algorithms are introduced by 

the signal noise present in the ambient surroundings during data collection. For this particular 

system, the performance can be evaluated based on the signal to noise ratio (Eq. 1) [86] where the 

best performance corresponds to the highest ratio: 

 =
S Required Signal Power

N Noise Power
 (1) 

For mobile sensing networks that must communicate wirelessly, a theoretical maximum 

data rate in bits per second (known as the Shannon-Hartley Law, Eq. 2) exists for the surrounding 

medium that is directly related to the signal to noise ratio: 

 
2= ( (1 ))

S
C B log

N
  (2) 

where C is the data rate and B is the bandwidth in Hz. It is worth noting that several 

filtering techniques (e.g, Kalman Filters, Washout Filters) have been used to effectively 

distinguish the actual sensor data from the background noise, essentially mitigating this problem 

for common environmental monitoring applications [47] where the noisy data is modelled by a 

linear Gaussian state-space model. 

 

2.2 Atmospheric Transport and Dispersion Modeling 

Atmospheric boundary layer (ABL) turbulence significantly influences the atmospheric dispersion 

processes. The ABL turbulence dynamics can be simulated using Numerical weather prediction 

(NWP) models such as Weather Research and Forecast model (WRF) [102], which have the 

capabilities to represent motions ranging from few meters to global scales of the atmosphere [73, 

102]. WRF provides a powerful framework to capture the macro-scale features of the ABL. The 

micro-scale turbulence is well represented using the large-eddy-simulation (LES) formulation 

within WRF [12]. Recent studies have successfully used the concept of nesting of grids and 

demonstrated WRF-LES as an effective tool to simulate field-scale ABL processes [15, 13]. One 

way interaction between the ABL and the plume is achieved using passive tracer formulation in the 

WRF-LES [78, 16]. Alternatively, the existing transport and dispersion models use the model 

output from NWP models. Examples of such dispersion models include HYSPLIT (Hybrid Single 
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Particle Lagrangian Integrated Trajectory) (Stein et al. 2015 [106]), AERMOD (American 

Meteorological Society/Environmental Protection Agency Regulatory Model) [28], and 

FLEXPART (Flexible Particle dispersion) [108], to name a few. 

An accurate representation of the atmospheric stability [40, 110, 25, 38] is important for a 

realistic model of plume dispersion in realistic scenarios. For example, Bhaganagar and 

Bhimireddy (2017) [11] demonstrated using the WRF model the significance of the role of 

atmospheric factors that influenced the dispersion of the chemical plume released on the fateful 

date of April 4, 2017, at 6.30 a.m. in the town of Khan Sheikhoun in northwestern region of Syria. 

Their study is one of the first studies to use WRF based dispersion models to estimate the 

short-term transport of plume subject to realistic dispersion processes. It should be noted that 

presence of surface roughness or irregularities complicates the dispersion processes [14, 10, 9], 

and most of these analysis ignores the surface roughness. 

In order to predict the dispersion of contaminants in realistic atmospheric conditions, many 

Atmospheric Transport and Dispersion (ATD) Models are available that aim to represent the 

dispersion as specified by the type of source and ambient environmental conditions. Ranging from 

simple analytical models represented by a single equation with few inputs to complex numerical 

models made up of a series of equations, the computational time and effort involved increases 

substantially. Several of these models are frequently used for predicting dispersion, including box 

models [88], Gaussian plume models [21], Lagrangian models [108], Eulerian dispersion models 

[49], Dense gas models [46, 34], Computational Fluid Dynamics (CFD), and many recommended 

alternatives provided by the US Environmental Protection Agency (EPA). A comprehensive list of 

several popular models for STE applications is provided in table 1, followed by a description of the 

ATD model types. 

In a review of ATD modeling techniques [49], it is shown that in general there is a strong 

correlation between gas and particle concentrations in open environments, while urban areas with 

large vertical structures show a disparity in the dispersion of gases versus particles. Only 

contaminants with particle diameters below 20 micrometers behave like gases (low settling 

velocities) and are commonly used in dispersion models [46, 34]. These constraints limit the 

selection of models for use with many source localization algorithms. 

 

Table 1: ATD Model Types 
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Model 

Type 

Model 

Name 

Topogra

phy 

Scale Resolution Types Pollutants Output 

Box AUROR

A VITO 

Simple L NA L CO, NO2, 

SO2 

1hr, 24hr, 

1yr 

CPB 

GEOME

T 

Simple L NA L G (Inert) 1hr, 24hr, 

1yr 

PBM NA R NA P,L,A G 1hr, 24hr, 

1yr 

Gaussian 

Plume 

CALINE 

4 

Simple L 1m L CO, NO2, 

TSP 

1hr, 8hr 

HIWAY2 Simple L 1m L G 

(Non-reactive

) 

1hr 

AEROPO

L 

Simple L 10-1000m P,V G,P 1hr 

ADMS Complex L,R no limits P,L,A G,P 10mins-1

yr 

AERMO

D 

Complex L,R no limits P,L,A,

V 

G,P 1hr, 24hr, 

1yr 

Gaussian 

Puff 

CALPUF

F 

Complex R no limits P,L,A,

V 

G,P 1hr 

Lagrangi

an 

GRAL Complex L 100m-20k

m 

P,L G,P 10min-1h

r 

Eulerian GATOR Simple L,R,G NA P,L,A,

V 

G,P 1hr-1yr 

CFD ARIA Complex L 1m+ P,L,A,

V 

G,P Real-time 

GP/Box 

(Hybrid) 

OSPM Simple L NA L NOx,NO2,O3

,CO 

1hr 
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Scale L = local, R = regional, G = global 

Source 

Types 

L=line, P=point, A=area, V=volume 

Pollutant

s 

G=gases, P=particles 

 

 Box: Given initial meteorological conditions as input, simulates the formation of pollutants 

within a ’box’ based on the conservation of mass. Does not provide information on the 

local concentration of pollutants, but is capable of representing the chemistry and physics 

of particle interactions. 

 Gaussian Plume: Simplest in complexity and least demanding on computational resources, 

the Gaussian Plume Dispersion model serves as a fundamental representation of the 

dispersion of a concentrated pollutant in open atmospheric environments. The Gaussian 

model provides gas concentration values at every point in three-dimensional space and is 

derived from the turbulent diffusion equation under assumed conditions of homogeneity 

and steady state flow. Dispersion in the vertical direction is governed by atmospheric 

stability (whose values are commonly determined based on Pasquill’s atmospheric stability 

classes [81]), while dispersion in the horizontal plane is governed by molecular and eddy 

diffusion. The dispersion coefficients are used to account for atmospheric turbulence by 

considering the surrounding meteorological conditions (wind speed, solar radiation, and 

cloud cover) as defined for the stability classes in Table 2. Based on a Gaussian distribution 

of the plume concentration in the vertical and horizontal directions under steady state 

conditions, these models consider the effects of diffusion and advection on dispersion, and 

typically do not incorporate the physical processes of particle deposition or chemical 

reactions. They are best suited for quickly calculating pollutant concentrations at hourly 

intervals. They are not designed to model the dispersion under low wind conditions ( <  2 

m/s) or at sites close to the source ( <  100 m), are unsuitable for far-field modelling, and 

are unable to predict the time required for pollutants to travel from the source to receptors. 

 Gaussian Puff: A modification of the Gaussian Plume model that approximates the 

pollutant emission as a series of puffs over time, allowing for a time-variant wind speed to 

be implemented. Individual puffs follow a Gaussian dispersion, and the overall effect of 
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the emission is calculated by integrating the puffs with respect to time and summing their 

contributions at receptor sites. 

 Lagrangian: Defines a volume (’box’) region of air containing an initial concentration of 

pollutants, then follows the trajectory of the box as it moves downwind and incorporates 

changes in concentration due to the effects of dispersion, mean wind velocity, and 

turbulence. These models are suitable for simple and complex terrains with homogenous or 

heterogeneous/unstable meteorological conditions. Atmospheric turbulence is accounted 

for by the calculation of the random motion of particles. 

 CFD: Computational fluid dynamics (CFD) models provide a dynamically sophisticated 

representation of fluid motion based on the conservation of mass and momentum by using 

finite difference and finite volume methods to resolve the Navier-Stokes equations. 

Although these models are able to represent the overall wind flow field, the model 

velocities and level of turbulence are highly sensitive to initial conditions. 

Alongside ATD models, Numerical weather prediction (NWP) models such as the Weather 

Research and Forecast model (WRF) [102] provide a powerful framework to capture the 

macro-scale features of the Atmospheric Boundary Layer (ABL) with the capability to represent 

motions ranging from few meters to global scales of the atmosphere [102]. The micro-scale 

turbulence is well represented using the large-eddy-simulation (LES) formulation within WRF. 

Alternatively, the existing transport and dispersion models can use the model output from NWP 

models, or in some instances, the NWP models can contain Eulerian or Lagrangian atmospheric 

dispersion models. 

 

Table 2: Pasquill Stability Classes and Criteria 

Stability 

Class 

Definition Surface Wind 

Speed 

Daytime Solar Radiation Nighttime Cloud 

Cover 

A Very 

Unstable 

m/s mi/h Strong Moderate Slight > 50% < 50% 

B Unstable < 2 < 5 A A - B B E F 

C Slightly 

Unstable 

2 - 3 5 - 7 A - B B C E F 

D Neutral 3 - 5 7 - 11 B B - C C D E 
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E Slightly 

Stable 

5 - 6 11 - 13 C C - D D D D 

F Stable > 6 > 13 C D D D D 

 

2.2.1 Characteristics of Source Emissions 

Sources of air pollutant emission belong to particular types that can be characterized based on 

several factors, including source shape, motion characteristics, level of urbanization, and release 

duration. The geometric shape of the emission source is one of the most influential factors on the 

behavior of the plume. 

 Point: a single identifiable source of emission approximated as a localised release from a 

zero-dimensional point that can be at ground-level or elevated (e.g., a combustion furnace / 

gas stack [21]) 

 Line: one-dimensional array of emissions (e.g., exhaust from vehicles along a roadway) 

 Area: emissions from a forest fire [26], evaporated vapors from a chemical spill of a 

volatile liquid 

 Volume: an area source with a third dimension representing height (e.g., dust emissions 

from wind erosion / gaseous emissions from oil refineries [69]) 

Contaminant sources are not limited to a single stationary position, and can be attached to a 

moving body (exhaust from automobiles). The duration over which they are emitting a pollutant is 

categorized into two separate classes: 

 Puff / intermittent source: emissions that consist of a series of instantaneous pollutant 

releases 

 Continuous source: emissions that continuously exhaust a pollutant 

The level of urbanization is dictated by the presence of human populations and large city 

infrastructures. Highly urbanized areas with high population densities (cities) can form a heat 

island that produces more heat than the surroundings causing the air to rise above the urban area 

resulting in more turbulence (and therefore instability) in the atmosphere than adjacent areas. 

Rural areas, on the other hand, have low population densities and typically do not have large-scale 

infrastructures that affect the level of turbulence in the atmosphere. 

In many instances where studies are focused on testing the performance of a source 

localization algorithm using mobile sensing robots, attention is given to stationary continuous 
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point source emissions at ground-level in rural areas. The Gaussian Dispersion model is used most 

often to predict the dispersion of contaminants due to its simplicity. 

 

2.3 Autonomous Ground-Based Mobile Robots 

In this paper, attention is given to unmanned land-based vehicles acting as autonomous 

mobile-sensing networks for the source term estimation problem. While this primarily includes 

unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV), a greater emphasis is 

placed on UGVs performing the task of source localization [19]. UAVs are more ideal for 

attempting to track the interface of a plume and are briefly reviewed in the corresponding section 

on interface tracking. Considering the use of autonomous ground-based mobile platforms for 

plume source localization, two significant efforts dependent upon data from multiple sensors exist: 

simultaneous vehicle localization and mapping (SLAM) [33] and meteorological data-driven 

guidance [27]. Because these efforts are performed concurrently during operation, the amount of 

data being received is significantly large, resulting in several difficulties when attempting to 

interpret, transmit, and utilize the data gathered. 

 

2.3.1 Mobile Robot Localization and Mapping 

For a mobile robot to operate autonomously in an unknown environment, it must be able to 

simultaneously identify the presence of any obstructions immediately surrounding it (mapping) 

and determine its own position relative to its surroundings (localization). Mapping requires the use 

of perception systems that allow the robot to extract multi-modal information from the 

environment [61]. Perception systems can include vision-based imaging equipment (e.g., light or 

thermal cameras) [2] and/or optical sensors such as LIDAR [79]. Vision systems have the added 

benefit of allowing external operators to view the robot’s surroundings and take over vehicle 

guidance if necessary (tele-operation). Optical sensors offer the ability to create a map of the 

environment and detect any nearby objects, which is crucial for efficient navigation when planning 

the vehicle’s trajectory. While a combination of the two sensor types can ultimately increase the 

perceptive capabilities of the robot, the computational efficiency acts as a harsh constraint, and a 

trade-off between the two is often required. 

Vehicle localization is accomplished by incorporating sensors that measure internal values 

of the robot (e.g., robot heading, wheel speeds, wheel loads) to provide an estimate of the robot’s 
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position relative to its previous states and any surrounding landmarks. A myriad of devices can be 

used simultaneously for this effort including GPS and Inertial Measurement Unit (IMU) sensors 

[74], and wheel encoders. Typically, with regard to mobile platforms, localization efforts to 

determine the robot’s current position historically include reading the wheel encoder values that 

count wheel rotations over time to update the vehicle’s position, a technique known as dead 

reckoning [6]. This basic method can prove unreliable however, as any slip that occurs between the 

wheel and ground surfaces will not be read by the encoders, resulting in a position estimate that 

drifts as the vehicle navigates. To prevent the accumulation of drift, GPS can be used to update the 

known position of the robot in combination with sensor estimation techniques (e.g., Kalman 

filtering [66]) that effectively improve the accuracy of the position estimate. 

 

2.3.2 Difficulties in Mobile Robot Sensing 

For a mobile-sensing network operating in outdoor environments, it is clear that a considerable 

amount of sensing devices are required (in addition to environmental sensors) to accomplish the 

overall goal of autonomously localizing a pollutant source [71]. An increasingly complex 

configuration of multi-modal sensing networks requires reliable integration of sensor data (data 

fusion) so that the robot’s perception of its environment is both accurate and computationally 

efficient [109]. Once the data from multiple sensors gets combined into a point cloud, it often must 

be compressed and transmitted wireless to a separate server for faster computational processing, 

which can become a significant difficulty depending on the bandwidth limitations imposed by the 

particular operating environment and the total number of sensors involved. These physical 

constraints limit the real-time capability of many proposed MSN architectures that attempt to 

incorporate a large number of sensing devices or additional mobile robots. 

It is necessary in practice to simulate the expected environment for a mobile sensor 

network so that the performance of its source-finding ability can be evaluated [8, 35]. The most 

ideal scenario used for simulation testing includes a flat homogeneous terrain without 

obstructions, multiple sensors excluding signal noise, a single continuous contaminant release, and 

the exclusion of turbulence in the diffusion process. These ideal conditions are often far from 

realistic, resulting in poor performance when experimentally testing in the field using real-time 

systems. 
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3 Plume Source Localization 

One of the major components to determining pollutant source term parameters involves deploying 

autonomous unmanned vehicles that seek the location of the contaminant emission. Many strategic 

methods have been employed to develop a reliable source localization algorithm that gathers 

useful information about the nature of the dispersion. This information is continuously collected in 

an attempt to reach a suitable dispersion model prediction, a process which is outlined in figure 1. 

 

Figure 1: STE Components Diagram 

 

Testing source localization algorithms within a realistic simulation environment has 

remained a key objective in validating their actual/expected performance when tested 

experimentally or compared to experimental datasets [85, 23], where the accuracy and resolution 

of sensors in real-time is limited. In attempting to validate any simulated results of this case in a 

real environment, the effects of turbulence on the concentration’s dispersion creates a large 

disparity in source seeking performance, often resulting in the localization of local maximum 

concentration values, a major difficulty when implementing gradient-based chemotaxis methods 

[68, 105]. Thus, developments in source-seeking approaches currently aim to increase the 

accuracy and speed of localization under conditions involving both dispersion and advection, and 

are largely dependent on accurately simulating the aforementioned scenario using a variety of 

Atmospheric Transport and Dispersion (ATD) modeling techniques [49]. An example of 

combining CFD and MATLAB simulation for evaluating plume source localization techniques 

within a complex indoor geometry (modeling contaminant propagation) is demonstrated in [8]. 

Source localization techniques have been widely tested for uniform, steady-state chemical 

plumes moving solely due to diffusion. The most outdated yet fundamental form of source 

localization is based around reactive global exploration, where mobile sensing networks follow 

pre-defined pattern trajectories while sampling concentration measurements across the entire area 

(domain) being searched. Aimed at improving the reliability, speed and efficiency of source 

localization by autonomous mobile platforms, current plume tracking algorithms typically take 

two main approaches, either through the use of optimization [101] or probabilistic techniques [20]. 

The more recent trend of combining the aforementioned strategies into a single hybrid algorithm is 

discussed in the final subsection. At the end of each of the following sections, a table containing 
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referenced applications of the major algorithms pertaining to each particular methodology is listed. 

Shown below, table 3 provides convenient abbreviations for several parameter descriptions. 

 

Table 3: Algorithm Parameter Descriptions 

Sensors: 
C = concentration, W = wind velocity, M = mass flux, 

E = entropy, T = temperature, En = Electronic Nose, L = light 

STE 

Parameters: 

x,y,z = source location coordinates, Q = source emission strength, 

t0 = time of release, t = duration of release, n = source quantity, 

wd = surface wind direction, s = turbulent diffusion parameters 

 

3.1 Exploration Methods 

First reviewing the fundamental strategies that have been developed to trace the source of a 

gas/chemical leak, reactive exploration-based methods aim to deploy path-following robots that 

measure concentration values across the entire (global) search-space, adjusting their path in 

response to detected concentration levels. The process is essentially performed in three phases 

[94]: 

1. Initially deployed outside of the contaminant area, follow a preliminary search direction 

until contact with the plume is made 

2. Using measured concentration values, trace the source of the chemical release by 

performing a unique exploration strategy 

3. After finding a global peak concentration value, confirm the predicted location of the 

emission 

While this approach will theoretically always find the source location (after the entire 

domain is explored), it is often too time-consuming to have real practical value in many cases. The 

more successful global-searching reactive exploration-based strategies have attempted to mimic 

the behavior of biological organisms that sense the concentration and wind in their immediate 

surroundings and use this information to follow the direction of increasing concentration (termed 

chemotaxis and anemotaxis). Relying heavily on the assumption of smooth, positive concentration 

gradients in the source direction, chemotaxic-only methods tend to fail in the presence of turbulent 

conditions. Combining the use of biologically-inspired anemotaxis methods such as those in table 

4 (Zigzag [51], upwind searching [92], silkworm moth [93]) has offered improvements and new 
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localization techniques altogether, but not definitive success. 

 

Table 4: Exploration / Direct Search Method Algorithms 

Algorithm Date Parameters Sensors Gradient References  

Zig-zag 1994 x,y,z W,C Yes [51] 

Upwind Search 1995 x,y,z W No [92]  

E. coli 1996 x,y,z C No [48] 

Silkworm Moth 1992 x,y,z,n W,C Yes [55]  

Braitenberg-Style 1993 x,y,z,Q C Yes [96] 

 

3.2 Optimization Methods 

The objective of optimization is to minimize a cost function that can represent a number of 

different objectives (minimization of the total energy cost, source location estimate error, etc.). 

Reviewed in [50], when applied to source localization, optimization approaches aim to estimate a 

single source location by minimizing an objective/cost function that aims to match the measured 

and predicted concentration values of an Atmospheric Dispersion Transport (ATD) model through 

an iterative process. Listed in order of increasing complexity, several subcategories exist: 

direct-search methods [123], gradient-climbing methods [100], and meta-heuristic methods [4, 44, 

45]. 

The simplest category, direct-searching, involves guiding the mobile robot along a 

pre-planned path trajectory until the gas concentration is detected, followed by re-initializing the 

path at the location of the highest detected concentration while aiming to minimize the objective 

function. Because of its simplicity, this algorithm works well (albeit rather slowly) for steady 

dispersion models, but fails to navigate in rapidly changing turbulent conditions. However, this 

method does not require an initial estimate of the source location, benefiting from its global 

searching strategy to reduce the chance of converging in a local maximum. Gradient-climbing 

approaches (listed in tables 4 and 5) have shown success in localizing steady plumes driven by 

diffusion where smooth concentration gradients exist throughout the plume. Regarding 

implementation in conditions with advection, these approaches require a highly approximate 

initial estimate of the source location and are otherwise revealed to have issues in converging at 

sites of local maximum concentrations. Strategies avoiding the need for good initial estimates, 
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classified as Meta-heuristics, prove to excel over gradient-climbing methodologies. 

An example cost function used in Least Squares Estimation that aims to iteratively 

minimise the sum of the squared residuals of the observed and predicted concentration 

measurements is shown in Eq. 3: 

 2

=1

= ( )
N

n n

n

J C D  (3) 

To minimize this function (which is dependent on the spatial locations during 

measurement), the gradient of J (cost) is computed and set equal to zero, allowing for an estimate 

of the direction of highest increasing concentration. This process is repeated until a single 

optimized solution (in this case, the estimated source location) is found. Thus, optimization 

algorithms are a useful tool for gradient-climbing approaches. 

Two common optimization-based gradient-climbing techniques that are reliant upon 

measurements of chemical concentration include Re-normalization [52] and the 

Brodyen-Fletcher-Goldfarb-Shanno algorithm (BFGS) [24, 37, 41, 98]. Renormalization is an 

extension of the more basic Least Squares Estimation optimization strategy while concurrently 

utilizing weighted measurements of a concentration monitoring network based on its arrangement 

to reduce the total search space [52]. This is a fundamental improvement in attempting to avoid 

convergence at sites of local maximum concentration, however its success has not been definitive. 

The BFGS algorithm belongs to the family of quasi-Newton optimization techniques [98] that 

offers improvements over Newton’s method for this particular application by approximating the 

inverse of the Hessian matrix, thereby improving computational efficiency and increasing the 

speed at which the function extrema can be estimated. Again, the algorithm is subject to converge 

incorrectly when used independently. 

The addition of environmental sensing beyond solely gas concentration has resulted in the 

development of more sophisticated meta-heuristic algorithms built off of the fundamental 

concepts established with chemotaxis. An improvement to global pattern searching, the simulated 

annealing (SA) algorithm [60] introduced by Kirkpatrick et al. [60] aims to bring the system from 

an initial state to a convergent state of minimum possible energy where accepted state changes are 

based on a Boltzmann probability Distribution [114]. Implementing the SA algorithm for the 

purpose of source localization, Thomson et al. [114] aimed to determine the location of a source 

and its emission rate while measuring gas concentration and wind velocity. Newman et al. [39] 
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used SA to determine contaminant zones in underground water, and compared its performance 

with a Minimum Relative Entropy (MRE) method [67], ultimately arriving at an optimal solution 

being a hybrid of the two, where MRE followed SA to provide confidence limits of a refined 

solution. 

Another popular technique used in many STE processes is known as the Genetic algorithm 

(GA). Representative of the natural evolution process [39], this evolutionary computation method 

is a global optimization technique (stochastic search method) that generates new solution 

candidates after multiple iterations (generations) so as to avoid the issue of local maximum 

convergence. With regard to source localization, the algorithm optimizes a combination of source 

parameters (location, strength, surface wind direction) that provide the best fit between measured 

concentration data and model-predicted concentration values as determined by an objective 

function, such as Eq. 4: 

 
( ( 1) ( 1))

=
( 1)

r r

r

ln C ln R
Cost

ln R

 



  


 (4) 

where rC  represents the model-predicted concentrations, rR  represents the measured 

concentration data for an individual receptor r, and   is a scalar value. In one of its most 

successful implementations [5], the GA was used to estimate the source terms of multiple releases 

with a better estimate compared to several optimization and probabilistic-based approaches [84]. 

The process functions as follows: 

1. Represent the problem variable domain as a chromosome of fixed length representing a 

combination of source term parameters. 

2. Define a fitness function to measure the performance of an individual chromosome (Eq. 4). 

3. Randomly generate an initial population of chromosomes of size N. 

4. Calculate the fitness of each individual chromosome. 

5. Select a pair of chromosomes with the highest fitness probabilities for mating. 

6. Create offspring chromosomes to replace the original chromosomes. 

7. Recalculate individual fitness and repeat the process until convergence 

Another popular optimization algorithm for detecting multiple emission sources with 

multiple cooperative robots is known as Glow-Swarm Optimization, although its use of large 

numbers of sensing platforms is infeasible for practical applications. 

Several modifications to these fundamental gradient-based optimization algorithms aimed 
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at improving source term estimates include the use of wind velocity data within the simulation 

environment [4], using known prior information and null sensor readings to limit the global search 

space, and more complex ATD models beyond the simple Gaussian dispersion model [17]. Many 

of the more successful optimization methods showed a large discrepancy between simulation and 

experimental results, owing to reliance on the ATD model and knowledge of the atmospheric 

conditions/stability, which includes a wide range of meteorological parameters that are subject to 

noise during measurement. Appeal can be seen in the comparative simplicity of optimization and 

global-searching methods as they often have the benefit of reduced computational requirements. 

However, a large portion of these algorithms (table 5) utilize gradient calculations that have 

demonstrated a severe shortcoming in their tendency to converge towards areas of local maximum 

concentration. Because optimization techniques only produce a single optimized solution by their 

design, they cannot reliably be used as a standalone approach. 

Local observations of meteorological data are typically conducted within tens of 

kilometers from the source of emission, capturing data that is heavily influenced by the 

surrounding environmental weather conditions [32]. Global forecast observations do not aim to 

capture the smaller localised regional effects of the environmental conditions, but instead make 

predictions over hundreds of square kilometers. 

 

Table 5: Optimization Method Algorithms 

Algorithm Date Params Sensors Grad Evaluation 

Method 

Domain Refs 

Least Squares 

Estimation (LSE) 
2012 x,y,z,Q,n C Yes 

Data from 

IIT diffusion 

experiment 

conducted at 

Delhi for 

surface 

release of 

tracer SF6 in 

low-wind 

conditions. 

- [99] 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Re-normalization 2009 x,y,z,Q W,C,T Yes 

Observations 

taken in the 

tracer 

diffusion 

experiment 

conducted 

for surface 

releases of 

tracer SF6 in 

February 

1991 at IIT 

Delhi in 

low-wind 

conditions. 

- [100] 

Pattern Search 

Method (PSM) 
2010 x,y,z,Q C No 

Synthetic: 

Gaussian 

Puff Model 

Local [123] 

Limited-memory 

BFGS 
2015 x,y,z,Q C Yes 

Synthetic: 

SCIPUFF, 

Gaussian 

Plume. 

Experimental 

data: FFT07 

Local [17] 

Simulated 

Annealing (SA) 
2007 x,y,z,Q C,W Yes 

Multiple 

surveys in 

the Middle 

East, each of 

which 

covered 

multiple 

hundreds of 

Global [114]  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



square 

kilometres. 

Genetic 

Algorithm (GA) 
2007 x,y,Q C,W No 

Synthetic: 

Gaussian 

Plume 

model. Twin 

experiments 

data. 

Global [4] 

 

3.3 Probabilistic Bayesian-Inference Methods 

Unlike optimization methods that provide a single estimated solution of the source location, 

Bayesian Inference-based STE methods produce a probability density function (PDF) of the 

estimated source parameters with associated confidence levels to account for any uncertainties 

obtained from the observed data, which is modelled as high-dimensional and non-Gaussian. Bayes 

theorem estimates the probability (or uncertainty) of an assumption or hypothesis being correct 

given new observed information [113]. With regard to Bayesian Inference applied to STE, the 

interpretation of Bayes Theorem can be written as Eq. 5: 

 
( | ) ( | , , )

( | , , )
( | , )

Prior x Likelihood P I xP D M I
Posterior P D M I

Evidence P D M I

 
    (5) 

Where   is the hypothesis (inferred source parameters) being estimated, given 

observations of data (measured concentrations or other parameters treated as random variables) 

D , the ATD model M , and any related prior information I . The prior distribution expresses 

what is known about the hypothesis before collecting any data measurements. If there is no known 

prior information, this probability becomes a uniform distribution. The likelihood function, also 

known as the sampling distribution [23], quantifies the probability of the data (measured 

concentration) being correct assuming that the hypothesis (predicted concentration) is true. The 

reverse statement is true for the posterior distribution, which expresses the probability of the 

hypothesis being true, assuming that the given data, model, and prior information is correct. 

Lastly, the evidence, or marginal likelihood, measures the support for a particular hypothesis. For 

the typical case of only a single source, this term is dropped, simplifying equation 5: 

 ( | , , ) ( | ) ( | , )Posterior Prior x Likelihood P D M I P I xP D M I     (6) 
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When applied to STE, each term can be updated sequentially via sampling methods, and 

the posterior distribution is of primary interest. The use of sequential Monte Carlo (MC) sampling 

techniques [31] can be applied to the Bayesian-based STE approach to feasibly produce an 

estimate of the posterior PDF for the given source parameters in real-time, which allows for an 

accurate representation of the parameter estimates and uncertainty. In the presence of many 

high-dimensional parameters being estimated, Markov Chain Monte Carlo (MCMC) and 

Sequential Monte Carlo (SMC) sampling techniques offer reliable computational efficiency and 

are not subject to linearity or Gaussian constraints. 

First examining MCMC, the sampling process begins by constructing a Markov Chain 

from an initial starting point (which may be a random walk in the absence of prior information), 

proposing inferences from this current ‘link’ and evaluating their likelihood of being the next link 

based on established acceptance criteria (commonly generated by the Metropolis-Hastings (MH) 

algorithm [72]). MCMC has been tested in real environmental applications, with its success being 

highly dependent on correctly specifying dispersion model errors [120]. SMC methods are 

simulation-based approaches that essentially perform the same routine as MCMC with an 

advantage in computational efficiency as inference proposals are generated in parallel. With SMC, 

new data can be incorporated into the algorithmic process immediately upon availability and 

assigned a weight (known as importance sampling) to update the posterior distribution. 

For Bayesian-based approaches to STE, a disparity exists between results from simulation 

and experiments (which is true for optimization approaches as well), in this case due to the 

inaccuracy of the model’s likelihood function and random sensor noise. By requiring a 

back-propagation of the plume model based on the measured concentration values to compute the 

likelihood function, many of these algorithms prove to be too demanding of computational 

resources for real-time applications [90]. To mitigate the issues arising from the unknown 

likelihood function, Lane et al. [62] used Approximate Bayesian Computation (ABC) as a 

likelihood-free rejection sampling method for data approximation to successfully estimate the 

source strength, location, and time of a single release with the SMC process. 

Some Bayesian-based approaches to STE that incorporate additional algorithmic strategies 

include Differential evolution Monte Carlo (DEMC), Polynomial Chaos Expansion (PCE), and 

Polynomial Chaos Quadrature (PCQ). DEMC uses the genetic algorithm in combination with 

MCMC to determine the jump proposition for multiple Markov chains [112]. PCE and PCQ 
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combine the Bayesian approach to STE with concepts extended from homogeneous evolutionary 

chaos [118]. PCE is a non-sampling based method that suffers from difficulties in evaluating 

nonlinear integration steps, while PCQ uses Monte Carlo sampling to overcome this pitfall. 

DEMC and PCQ have both been used for attempting STE with experimental data as described in 

Table 6. 

Ultimately, probabilistic methods (table 6) often have an advantage over optimization in 

that they provide a measure of uncertainty along with the estimate for the source term, which can 

overcome the major issue of convergence at sites of a local maximum concentration. This 

uncertainty estimate, which can be produced by a probability distribution function, allows for 

sequential update-based algorithms to determine the desirable choice of direction at each iterative 

step in the source-seeking process. Because many of these algorithms require an initial estimate of 

the source location, a poor first choice can consequently lead to failure. To improve the accuracy 

of the initial estimate, incorporating meteorological data acquired by external sources such as 

static sensor networks, satellites, and weather stations allows for the reduction of the designated 

search-space and provides a general idea of where the source is located. 

 

Table 6: Probabilistic Bayesian-Inference Method Algorithms 

Algorithm Date Params Sensors Likelihood Evaluation Method Refs 

MCMC 2007 x,y,Q C Yes Mock urban setting test 

(MUST), full-scale field 

experiment (joint Urban 

2003) 

[57] 

MCMC 2012 x,y,z,Q,s C Yes Synthetic: Gaussian 

Plume 

[20] 

SMC 2013 x,y,z,Q,s C Yes SCIPUFF, Gaussian Puff [117] 

DEMC 2009 x,y,t,Q C Yes Gaussian Plume [91] 

PCE 2013 x,y C Yes SCIPUFF [68] 

PCQ 2012 x,y C Yes Numerical Simulation [1] 

ABC 2009 x,y,z,n,t0 W,C No Bar-sensor model, 

Gaussian Plume 

[62] 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



3.4 Hybrid Source Localization Methods 

Combining multiple approaches into a single ’hybrid’ algorithm (table 7) is certainly an ongoing 

trend that aims to handle the many difficulties produced by turbulence in real-world experiments. 

The spectrum of current methods used for improving source seeking algorithms embody the 

combination of traditional gas-sensing techniques (which have proven successful for the steady 

state case) with additional sensing of other environmental parameters. Additional measurable 

parameters that have inspired new localization techniques include wind velocity (anemotaxis) 

[17], mass flux (fluxotaxis) [77], and entropy (infotaxis) [67]. With an increasing amount of 

available sensors and data-fusion efforts offering improvements in the perceptive capabilities of 

mobile sensing platforms, along with a vast collection of ongoing weather observations, 

autonomous source localization strategies continue to evolve in both complexity and capability. 

 

Table 7: Hybrid Algorithms 

Algorithm Date Params Sensors Evaluation Method Refs  

Minimum Relative 

Entropy (MRE) + 

Particle Swarm 

Optimization (PSO) 

2014 x,y,z,Q C Gaussian Plume, 

Prairie Grass emission 

experiment (Barad, 

1958) 

[67]  

Nelder-Meade 

Downhill Simplex 

(NMDS) + Genetic 

Algorithm (GA) 

2007 x,y,Q,wd C,W Synthetic: Gaussian 

Plume, field data. 

[44]  

Approximate 

Bayesian 

Computation (ABC) 

+ Sequential Monte 

Carlo (SMC) 

2015 x,y,z,s C Experimental datasets 

collected by 

COANDA Research 

& Development 

Corporation. Dataset 

1 was collected in the 

absence of any 

obstacles mimicking a 

rural terrain. Dataset 2 
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was collected in the 

presence of mm high 

obstacles mimicking 

an urban terrain. 

 

4 Plume Interface Tracking 

Sharing the overall objective of obtaining accurate meteorological data to sufficiently estimate the 

nature of a contaminant plume’s dispersion, the tracking of a plume’s boundary/edge/interface can 

also be accomplished autonomously through the deployment of unmanned vehicles. Useful 

applications include monitoring oil spills [29], nuclear radiation levels [115], growth of harmful 

algae [70], and estimating the spread of contaminant pollutants and volcanic ash clouds [107]. 

Similar in strategy to source localization, techniques developed for this purpose utilize 

measurements of concentration in the region of interest at individual points with a single vehicle 

[22] or multiple points with cooperative vehicles [53] in order to approximate the spatial extent of 

the contaminated area. For the task of tracking the interface of a developing plume, many 

strategies require the use of multiple cooperative (swarm) robots. Because of the 

three-dimensional nature of the dispersion in open environments, unmanned aerial vehicles 

(UAVs) offer a practical solution to measuring many points along the contour when compared to 

UGVs alone, which cannot feasibly collect data at variable altitudes. 

Optimization methods similar to those described for source localization have also been 

used with mobile sensors for boundary tracking by minimizing a cost function representing the 

difference between the desired and measured concentration values at the estimated contour. In its 

most successful application, a collaborative algorithm was used that aimed to minimize the 

centroid distance of the plume. Implemented by Srinivisan et al. in [104] and renamed Adaptive 

Contour Estimation (ACE), the centroid location of the contour was estimated by utilizing 

information about the concentration gradient to guide the mobile sensors using an adaptive 

sampling algorithm. Several other estimation and control approaches have also been used for 

boundary tracking using mobile sensors, and the more successful methods are discussed next. In 

most cases, the simulation tests were performed with clearly defined boundaries and no account 

for sensor noise, limiting their practicality in field experiments. 

First examining the fundamental control algorithms, perhaps the simplest is known as 
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bang-bang control. For boundary tracking there exist only two system states that alternate when 

the vehicle crosses the contour edge. In a basic implementation, Kemp et al. [58] used bang-bang 

control requiring a single concentration sensor with an unmanned underwater vehicle (UUV) to 

track an underwater boundary. Several sources of error exist with this method, where failure to 

consistently track the boundary can occur due to large redirection angles, sensor noise, and narrow 

bottlenecks along the edge. Improvements proposed by Bertozzi et al. [53] aimed at correcting the 

turning (redirection) angle which has been extended to cases involving multiple vehicles [54], 

along with the addition of a cumulative sum algorithm for the purpose of reducing the effects of 

noise. This particular control algorithm has been used for the purpose of monitoring an oil spill, a 

radiation field [115], and even a dynamic plume [22] (with the addition of a static-sensor network). 

With the exception of the latter application, this method has seen greater success in regions of 

quasi-static contaminant fields, where the movement of the boundary is much slower than that of 

the vehicle’s speed. An extension of bang-bang control, sliding mode control acts in a similar 

manner, redirecting the vehicle at a ‘sliding distance’ away from the boundary with a threshold 

value specified by the concentration density near the edge. Several common applications of 

boundary tracking showed that this algorithm was particularly robust to typical uncertainties seen 

with bang-bang control. 

At the peak of control law tracking algorithms, multiple cooperative robots have been used 

in formation to track level sets of a moving field [122]. The fixed-shape formation control of 

multiple Newtonian particles allowed for many additional steering control laws to be developed 

using differential geometric approaches that controlled the center of formation to detect and track 

curvatures based on the estimated concentration gradient at multiple points simultaneously. 

Additionally, this method has been extended to track 3-D surfaces using multiple UAVs [119]. 

Other developments attempt to estimate and visualize the boundary curvature [26]. Demonstrating 

the diversity of mathematical approaches to boundary tracking, Neural Networks (NN) have also 

been combined with a robust controller to allow a mobile robot to track a moving boundary and 

estimate the unknown model parameters [111]. 

 

5 Conclusion 

Regardless of the strategic approach taken by mobile sensing networks, there are still many 
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limitations associated with accurately testing the source localization algorithm’s performance in 

simulation against field trials due to constraints on CPU capabilities including processing, 

available memory, and wireless data communication for testing in both simulation environments 

and real-time field experiments. As computational efficiency stretches even further alongside 

technological developments, and the above limitations are made less restrictive, then the overall 

capabilities of mobile sensing networks can feasibly extend to include more complex hybrid 

data-fusion algorithms and additional sensors and sensing platforms (cooperative robots). 

Emerging trends that follow these expectations include: 

 Combining several algorithms into a hybrid method to utilize their individual benefits and 

increase reliability. 

 Increasing the complexity of the atmospheric dispersion model beyond the simple 

Gaussian Plume case by using CFD model generated plumes that incorporate the effects of 

turbulence. 

 Utilizing other meteorological sensor data in addition to gas concentration (wind velocity 

and direction, mass flux, entropy, turbulent intensity), within the bounds of wirelessly 

transmitting a larger amount of data at a high enough frequency. 
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Highlights  

 For dynamic tracking of plume in space-and time, the data collection using mobile sensing 

increases the detection accuracy compared to meteorological towers.  

 Conducting polymer gas sensors are most efficient for autonomous robots to locate the source 

in the least amount of time.  

 Atmospheric turbulence influences the dispersion processes, hence, obtaining data using 

Large-eddy-simulation framework within numerical weather prediction models increases the 

accuracy of the dispersion models significantly.  

 Optimal multi-sensor fusion algorithms are critical to accomplish the goal of autonomously 

localizing the pollutant source.  

 Bayesian, Optimization, and Hybrid source-finding methods are reviewed.  
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Figure 1


